
Tectonic earthquakes occur when the stress of Earth’s crust exceeds the instant shear strength. 
Determining the stress state of a particular area using the equations of mechanics requires 
knowledge of the boundary conditions, which in most cases seem impossible. This paper proposes 
the determination of horizontal stresses for the Central Asian territory using the well-known 
geodynamic hypothesis, according to which the deformation of the Earth’s crust in Central Asia is due 
to the interaction of the Indian, Arabian, and Eurasian plates. The unknown boundary conditions are 
reconstructed by solving the inverse problem of elasticity. Some known empirical stresses are used to 
verify the problem. The solution of the elastic problem makes it possible to set the problem of 
tectonic creep movements using the Stokes equations. The model is veri�ed by means of horizontal 
velocity and rotation �elds constructed from GPS data. The creep model makes it possible to 
determine the vertical velocities of the Earth’s crust and supplements the GPS data. The constructed 
stress state model is used to calculate the variation in the earth’s crust stresses due to earthquakes. A 
double dipole without a moment is taken as the source mechanism of earthquakes. The boundary 
element method (BEM) is used for the numerical realization of the model.
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�e study of modern tectonic stresses at di�erent scale levels is 
becoming increasingly important in the Earth sciences. �e 
determination of these �elds is very promising for new poses, 
not only purely scienti�c but also for prospecting, prognostic, 
geo-ecological, and other applied problems. Geodynamics uses 
data from geology, geophysics, and other sciences and makes 
extensive use of mathematical and physical modeling. 
Geodynamics studies the nature of the underlying processes 
that arise because of the Earth’s evolution and cause the 
movement of matter within the planet. �e study of the stress 
state of the Earth’s crust and mantle is one of its main tasks [1]. 
Stresses are a peculiar characteristic of the tone of the Earth’s 
crust and mantle, which determines the course of geological and 
geophysical processes. �e study of the stress state of the Earth’s 
crust has not only important scienti�c but also practical 
importance. �e fact that rocks experience great stress has long 
been well-known. Tunnel builders encountered it as early as the 
last century. Knowledge of the stressed state of rock massifs can 
increase the reliability of structures by several times.

 �e study of the stressed state of the Earth’s crust is carried 
out on the basis of the combined use of various methods. �e 
leading role belongs to geological methods of reconstruction of 
stress �elds, which took place in the past during the 
development of typical structural elements of the Earth’s crust. 
Since geological investigations alone are not su�cient to 
determine the distribution of stresses in the Earth’s crust, 

theoretical calculations and modeling of stress �elds are of 
great importance. A possible limitation of the model 
conclusions is connected with the inaccessibility of direct 
experiments at Earth depths for the establishment of real 
values of physical parameters.

 �ere are a su�cient number of publications assessing the 
stress state from earthquake mechanisms and geological data 
[2-5]. An extensive review of stresses worldwide is given in 
[6,7]. Some of this information is based on instrumental data, 
but most of it is derived from seismological data. Such data are 
also available for certain areas of Central Asia [8-13]. 
However, all of them are limited to local reconstruction of the 
geodynamic type of deformation 
(tension-shear-compression) and do not give a quantitative 
characteristic of the stress state of the Central Asian crust as a 
whole. Moreover, such works o�en do not take into account 
the basic provision of mechanics - equations of equilibrium 
and boundary conditions, which is rightly criticized by 
Mukhamediev [14,15].

 Gzovsky analyzed numerous studies by di�erent authors 
on tectonic movements during the last 30 million years and on 
seismicity over 50 years for the territory of the former USSR 
[16]. He estimated approximate values of possible maximal 
tangential stresses at depths of 15-20 km, where the sources of 
strong earthquakes are mostly concentrated. Particularly in 
the territory of Central Asia, they obtained values in the range 

from 0.1 to 1.5 (108 Pa), with the lowest values in the Turan 
plate and Central Kazakhstan shield and the highest values in 
the South Tien-Shan and Hindu-Kush parts of the 
Pamir-Hindukush zone In the Northern Tien Shan, Fergana 
intermountain trough, on the big part of Alay and on the 
territory of Pamir maximum tangential stress is estimated 
0.7-1 (108Pa), on the rest territory 0.4-0.6 (108Pa).

 To determine stresses according to the continuum 
equations, boundary conditions have to be set for equilibrium 
equations. Unfortunately, this is di�cult for geodynamic 
problems. At best, we know the fragmentary stresses extracted 
in wells. For a block of rock in natural occurrence, such 
information is usually absent or extremely unreliable since it 
can be derived only from speculative constructions and 
assumptions. Obtaining quantitative stress data based on a 
mathematical model is the main goal of our work.

 Historically, Central Asia underwent a pre-platform 
regime lasting approximately 330 million years from the 
beginning of the Cambrian to the end of the Permian, then a 
platform regime lasting approximately 220 million years to the 
beginning of the Neogene, and �nally, an orogenic regime 
lasting more than 27 million years. According to the 
predominant opinion of the experts, it is believed that the 
region’s tension is caused by the action on the Turan plate of 
the compressive forces of the Punjab wedge of Hindustan and 
the Arabian plate relative to the Eurasian plate. Extrapolation 
of the modern velocities of relative plate movement on the 
southern boundaries gives estimates of 25-46 km/mln years.

Methods
Analyzing the orientation and magnitudes of stresses in 
di�erent belts of the world, Nikolaev et al. concluded that the 
stress �eld in the lithosphere is the result of modern forces 
rather than residual stresses from past tectonic activity [17]. 
�erefore, we decided to build a model of the stress state of the 
Central Asian lithosphere based on the current picture of the 
deformation of its lithosphere. On the basis of elasticity 
equations, the inverse problem is solved. Atabekov de�ned the 
boundary conditions by means of which the received stresses 
on the territory of Central Asia do not contradict the 
empirical values described above [18]. According to the 
properties of stone in laboratory conditions, the elastic 
modulus of granite is approximately 39-40 MPa, and the end 
shear modulus is approximately 14-34 MPa [19]. From this 
follows the question of whether it is possible to apply the 
methods of the theory of elasticity at such stresses. However, at 
the depths of the Earth’s crust, rock strength increases linearly 
with increasing pressure (Byerlee’s law) [20-23]. �erefore, to 
calculate the stresses of the Earth’s crust, it is quite possible to 
apply the methods of the theory of elasticity. Our study of the 
earthquake energy determined on the basis of seismological 
data within the last 120 years shows that the strongest 
earthquakes in Central Asia with geographical coordinates 
(36°-46°E; 56°-76°N) (Figure 1) occur in the interval of 15-20 
km in the Earth’s crust (Figure 2). �e total energy was 
calculated from the earthquake magnitude using the known 
formulas LgE =10K and K =1.8 M+4 available for the territory 
of Central Asia.

�e stress state of the lithosphere is determined by momentum 
equilibrium equations: 

i,j=1,2,3
where σij and µij are the components of the force and moment 
stress tensor, comma j means di�erentiation by Cartesian 
coordinates xj, F (0,0, ρg) is the mass force, ρ is the density, g is 
the acceleration of gravity, εijk is the Levi – Civita tensor, and Mi 
is the mass moment having the size of the moment divided by 
the volume.

 �e main di�culty in the application of asymmetric theory 
lies in the di�culties encountered in determining the constants 
connecting the generalized stresses with the kinematic 
parameters for obtaining the constitutive relations of materials. 
�ere is a limited number of experiments that allow the 
identi�cation of six elastic Cosserat constants only for the 
simplest materials that are known. Considering this 
uncertainty, the rotation can be roughly expressed as before, 
using the formulas ωk =εijkui,j, and then µij =0 and formula (2) 
expresses the asymmetry of the stress tensor corresponding to 
the moment:

    (3)

 Equations (1-3) are supplemented with boundary 
conditions. �ere are no stresses on the Earth’s surface, and on 
the contact of the lithosphere with the asthenosphere, the 
normal stresses are equal to the weight of the overlying layers, 
and the tangential stresses can be assumed to be frictional 
forces arising from the relative movements of the more mobile 
asthenosphere with the lithosphere:

      (4)

                 (5)

 Here, H=H(x1,x2) is the relief of the Earth’s surface, h=h(x1,x2) 
is the lower boundary of the lithosphere, and ka is the 
coe�cient of friction of the lithosphere with the 
asthenosphere. �e problem was solved relative to the Eurasian 
plate, i.e., the displacements corresponding to the lateral 
boundary of the Eurasian plate were considered zero. �ere are 
no boundary conditions on the other lateral boundaries of the 
selected volume. According to tectonic data, the lithosphere of 
the whole region is divided into several conditionally 
homogeneous blocks, which di�er in physical parameters.

 In the Cartesian coordinate system placed on the Earth’s 
surface, the x1 axis is directed parallel, the x2 axis is directed 
along the meridian, and the x3 axis is directed vertically 
downwards. Geodynamic features of the problem statement, 
together with the geometric dimensions in plane and thickness 
of the lithosphere h, allow simpli�cation of the 
three-dimensional equations (1) by the following formula: 

                                                                                               (6)

 where the dash means averaging over x3. In geodynamics, 
the thickness of the lithosphere h is usually assumed to be 
constant and equal to 100 km (1). �is method reduces the 
solutions of the problem to a two-dimensional one but with the 
possibility of preserving some three-dimensional speci�city of 
the solutions. As a result, the following Lame equation was 
obtained for the averaged elastic displacements u1 and u2:       
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 Here, Ū-two-dimensional vector with components of 
averaged horizontal displacements, Δ - two-dimensional 
Laplace operator, ν - Poisson’s ratio, u3

h, u3
H vertical 

displacements at the base of the asthenosphere and on the 
surface of the earth. �e p parameter appears when applying 
formula (6) to the shear stress on the free surface of the earth 
and expresses the ratio of stresses on the surface and the 
expected average depth. �e derivatives Mi are averaged by 
formula (6).

 In the equations, linear variables are scaled with respect to 
h, and stresses and moments are scaled with respect to the 
average elastic shear modulus G0.

 In the geographical system of coordinates, Mi is expressed 
using the parameters of the failure plane angles of strike ϕ, slope 
λ, dip δ, and moment M0. According to Landau and Lifshitz 
[24], moment M0 is equal:

 M0 =µAU               (12)

 where µ is the rigidity in the source region, and A is the area 
over which the shear dislocation U has been averaged. �e 
moments Mi and M0 are expressed through the parameters of 
the failure plane according to Aki by the following formulas 
[25]:
          М1=-М0(cosδ cosλ sinφ -cos2δ sinλ cosφ),
          М2=-М0(cosδ cosλ cosφ +cos2δ sinλ sinφ),
    М3=М0(sinδ cosλ cos2φ +1/2 sin2δ sinλ sin2φ)    (13)                                                   

 For example, in the special case of a double dipole at the 
location (x10, x20, x30) of the nodal plane by the azimuth φ=0°, 
slope δ=90° and slip angle λ =90°, they are the next:

            M1=M3=0

                                                                                           (14)

 Here, M3 is expressed as an energetic model according to 
Riznichenko [26], where r0 is the relative radius of the reference 
sphere, ne� is the divergence coe�cient, and Δσ is the stress 
relieved.

 �e solution to the problem with incomplete boundary 
conditions is naturally not unique. Additional information is 
required to construct a solution to such problems. For instance, 
in the case of a single equation domain (i=1), the solution can be 
represented as a sum with coe�cients of elasticity problem 
eigenvalues and by selection of coe�cients by the least squares 
method involving some a priori information [27,28]. In some 
cases, the solution to Fredholm equations with respect to the 

boundary values, and then additional information is used. We 
do not question the existence of the set problem and acceptable 
solution constructed based on concrete geodynamic 
conditions. According to the hypothesis described above, the 
stress-strain state of the considered territory is caused by the 
compression of the Eurasian plate on one side and the Indian 
and Arabian plates on the other side. It would be naive to look 
for the solution of a heavy elastic prism resting on a �xed base, 
which receives the vertical displacements corresponding to the 
real relief of the earth under the action of lateral compressions. 
At least in the formulation of small deformations, this is 
nonsense because the height of the real terrain reaches 6-7 km. 
�erefore, by numerical experiment, Atabekov [18] decided to 
construct the boundary conditions in such a way that the 
obtained solution under these boundary conditions 
approximately coincided with the established empirical values 
in Gzovsky [16]. At the beginning of the experiment, the 
average σij in the right part of formulas [17,18] was used to 
solve the plane problem, the boundary conditions for which 
were selected preliminarily according to hypothetical data 
about the velocities of the Indian and Arabian plates relative to 
the Eurasian plate. Namely, the stress relations created by the 
Indian and Arabian plates at the southern corners of the Turan 
plate were taken equal to their velocity relations with uniform 
interpolation. Each stress on the right and le� sides of the 
rectangle, which limits our region in plan, was interpolated to 
the upper boundary of the Eurasian plate, which is assumed 
stationary. Figure 3 shows the corresponding boundary 
conditions for this problem and the obtained stress intensity 
isolines σi, determined by the formula: 

               (15)

 

 �e reconstructed stresses of an elastic problem are used 
as initial data for other problems. For example, to solve the 
problem of the modern movements of the Earth’s crust in 
territories of Central Asia by Stokes equations Atabekov [29]. 
�e tectonic �ow of mountain masses occurring in a relatively 
short time can provide important information. One of the 
important parameters in seismic zoning is the displacement 
rate gradient. In contrast to the tectonic stresses, which change 
weakly, the seismotectonic �ow of rock masses occurring in a 

relatively short time can provide important information for 
tectonic zoning. We apply to the Stokes equations similar 
procedures described above for the elastic problem. By relating 
the averaged displacement velocities h/t0, and stresses to μ0/t0 
(µ0-the average viscosity of the constituent regions, t0-the time 
scale), we obtain the following dimensionless Stokes equations:

 Formula (19) is obtained by averaging the continuity 
equation. In this case, the values of the vertical velocity on the 
lithosphere are taken equal to zero v3(x1, x2, h) =0.

 �e time scale is chosen from the equality of dimensionless 
tangential stresses in the Lamé and Stokes equations:

                                                                                         (20)
 
 

 �e boundary conditions for creep motion were chosen 
according to the modern velocities of the tectonic plates and 
stresses and the found stresses for interior points of the Lame 
equation. Equations (7) and (14) were solved by iteration. As a 
zero approximation, and u3h=0. In each iteration, the system 
was solved by the BEM. �e integral equations of the method 
have a standard form [30]: 

                                (21)

 Here,            ,               , Si are the boundaries of the 

two-dimensional domain Ωi, rj=xj-ξj, bj are the right-hand sides 
of the equations, and pij

*, wij
* are fundamental solutions. �e 

coe�cient cij(x) expresses the regularity of the boundary curve 
and the choice of the fundamental solution. For a regular curve, 
it is equal to π. In the program, it is calculated automatically 
based on the approximated broken line of the boundary curve 
and is equal to the internal angle of the boundary at point x. For 
the Lamé equations (w=ū), they have the following form (31):

                                                                          (22)

                                                      (23)

<i,j=1,2>.
For the Stokes equations (          ) Ladyzhenskaya [31]:

                                                                                      (24)

 

                                                                                                    (25)

�e averaged stresses in the case of creep �ow are constructed 
by the formula:

                                                                                                   (26)

Here’s

                                                           (27)

                                                                                             (28)

 Integral equations (21) contain both known and unknown 
boundary values. In numerical implementation, the calculated 
integrals with known boundary values of velocities and 
stresses are separated into matrix B, which constitutes the 
right-hand side of the algebraic equation. �e integrals with 
unknown displacements and stresses constitute matrix A. �e 
integrals over S are separated into the sum of integrals Si with 
di�erent physical parameters, taking into account the 
conjugation condition of stresses and velocities. �e 
boundaries Si are divided into linear elements, Ωi into 
triangles, the vertices of which are interior and boundary 
points.

Results
�e search for the solution of the main problem is reduced to 
the solution of a number of direct problems by varying the 
boundary stresses. In the initial stage, the boundary conditions 
were taken as for the plane problem. �e stresses obtained 
from the solution of the previous cycle were on the right side of 
(7-9) in the subsequent cycle. Using the formula (11), the 
corresponding modi�ed relief was constructed as u3 (x1,x2, H). 
Figure 4 shows some variants of the relief obtained in the 
numerical experiment. �e �rst picture built on the 
topological map of Central Asia was adopted for the initial 
stage of the numerical experiment. In each cycle, the boundary 
conditions were varied so as not to spoil the real relief and to 
obtain stresses close to the empirical data Gzovsky [16]. �is 
was the essence of the numerical experiment. 

 Currently, not the entire territory of Central Asia is covered 
by a network of GPS data that serve to monitor the movement of 
the Earth’s crust to analyse and assess the stress state of the 
geological environment and forecast changes in the subsurface 
under the in�uence of natural and anthropogenic factors. 
However, unlike horizontal velocities for which there are �xed 
objects taken as reference points, monitoring vertical velocities 
is di�cult. As a result of solving the Stokes problem, we can 
construct by formulas (16-20) a �eld of vertical displacement 
velocities, which are not instrumentally available everywhere. 
�erefore, the creation of a numerical model of the stress state 
of the Central Asian territory serves as an invaluable 
contribution of mechanics to geodetic surveys.

 One of the seismically active territories of Uzbekistan is the 
Ferghana depression (marked with a triangle in Figure 1), 
bounded by active Talas-Ferghana, 
Aksu-Maydantal-Bogonalin, and Gisar-Kokshal faults, 
containing North Ferghana and South Ferghana deep faults, 

which determine the main tectonic weather in this region. 
Within its limits, there is a fairly large reserve of hydrocarbons. 
During the historical period, strong earthquakes with 
magnitudes of M> 7 occurred here. Its main tectonic feature is 
that, under near-meridian compression, the depression has a 
ri� character, characteristic of extension zones. Such features 
of the geodynamics of the region require further clari�cation. 
For modeling, the territory was divided into somewhat 
conditionally homogeneous blocks, as the boundaries of which 
we took deep faults. As a result of the calculation by formulas 
(16-20, 24-28), the �eld of stresses and velocities of the region 
was constructed. Figure 5 shows the averaged horizontal shear 
stresses at depths of 15 km in this area. �ey mark the most 
vulnerable places where there may be dangerous earthquakes 
in the future. Figure 6 shows the vertical movement velocity 
calculated by formula (19). �ey complement the available 
GPS data and, together with stresses, are valuable tectonic 
material for seismic hazard prediction. 
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 �e formulas (7-11, 21-23) make it possible, on average, to 
estimate changes in the stress state of the Earth’s crust due to 
earthquakes. Using simpli�ed models of the earthquake focus 
mechanism φ=0°, δ=90°, λ =90°, we can estimate how the shear 
stresses of the Earth’s crust in Central Asia approximately 
change during speci�c earthquakes. For the example of a 
recent earthquake that occurred in the territory of Tajikistan 
(38.070N|73.200E shown as a polygon in Figure 1) on 
23.02.2023, 00:37:19 GMT, with a magnitude of M0=6.8 and a 
focal depth of h=21 km, the stresses were calculated (Figure 7). 
In this case, this applies because this earthquake occurred 
along an active fault that is located subparallel. As a variation, 
the stress di�erence obtained by equations (8-9) at zero and 
nonzero values of the moments were taken.

 �us, the proposed methods can be applied to �nd the 
stress-strain state of other regions, taking into account their 
peculiarities.

Conclusions
Based on the continuum equations, a model of the stress state of 
the Central Asian lithosphere has been created. Given the 
peculiarities of geodynamic problems, the three-dimensional 
Lame and Stokes equations are averaged in-depth, taking into 
account the topography of the region. Numerical solutions were 
obtained using the method of boundary integral equations for 
zonally homogeneous bodies. �e stresses obtained by the 
solution of the Lamé problem are used to reconstruct the 
modern movements of the Earth’s crust in the local territory of 
Central Asia using the Stokes equations. Stresses and horizontal 
and vertical displacement velocities serve as additional 
information for monitoring the Earth’s interior of Central Asia.

Disclosure statement
No potential con�ict of interest was reported by the author.

References

1. Turcotte DL, Schubert G. Applications of continuum physics to 
geological problems. John Wiley & Sons; 1982.

2. Osokina DN, Nikonov AA, Tsvetkova NY. Modeling the local stress 
�eld of the San Andreas fault system. Polya napryazheniy i 
deformatsiy v litosfere (Stress and Strain Fields in the Lithosphere), 
Grigor’ev, AS and Osokina, DN, Eds., Moscow: Nauka. 
1979:205-227.

3. Sherman SI, Dneprovsky YI. Stress �elds of the Earth’s crust and 
geological and structural methods of their study. Novosibirsk, 
Nauka, 1989:157.

4. Yunga SL. Methods and results of study of seismotectonic 
deformations. Moscow, Nauka. 1990:190.

5. Rebetsky YL, Sim LA, Marinin AV. From Slip Mirrors to Tectonic 
Stresses. Methods and algorithms. Moscow, GEOS. 2017:234.

6. Zoback ML. First and Second Modern Pattern of Stresses in the 
Lithosphere: �e World Stress Map project. J Geophys Res. 

20. Byerlee JD. Frictional characteristics of granite under high 
con�ning pressure. J Geophys Res. 1967;72(14):3639-3648.

21. Liu Z, Jin D. Experimental Research of Rock Strength and 
Permeability Characteristics under Di�erent Con�ning and 
Hydraulic Pressure. An Interdisciplinary Response to Mine Water 
Challenges - Sui, Sun & Wang (eds) 2014 China University of 
Mining and Technology Press, Xuzhou, 2014 (pp. 183-186).

22. Tang Y, Zhang H, Xu J, Okubo S, Liu X. Loading Rate Dependence 
of Rock Strength Under Triaxial Compression. Frontiers in Earth 
Science. 2021;9:728366.

23. Karev VI, Khimulia VV, Shevtsov NI. Experimental Studies of the 
Deformation, Destruction and Filtration in Rocks: A Review. J 
Mech Phys Solids. 2021;56(5):613-630. 

24. Landau LD, Lifshitz EM. �eory of Elasticity, 2nd edn, Pergamon, 
Oxford, 1970;248.

25. Aki K, Richards PG. Quantitative Seismology: theory and methods, 
WN Freeman & Co. San Francisco. 1980;2:360.

26. Riznichenko YV. Energetics of macroseismics. Izv. Akad. Nauk 
SSSR Fiz Zemli. 1974(8):3-10.

27. Vatulyan AO. Inverse problems in the mechanics of a deformable 
rigid body. Moscow, Fizmatlit. 2007:224. 

28. Galybin, AN, Mukhamediev SA. Determination of elastic stresses 
from discrete data on stress orientations. Int J Solids Struct. 
2004;41(18-19):5125-5142. 

29. Atabekov IU. Experience in Modelling the Seismotectonic Flow of 
the Earth’s Crust in Central Asia. Izv. Phys. Solid Earth. 
2021;57:110-119. 

30. Brebbia CA, Telles JCF, WrobelLC. Boundary Element Techniques. 
Springer-Verlag Berlin, Heidelberg, 1984:524.

31. Ladyzhenskaya OA. Mathematical problems in the dynamics of a 
viscous incompressible �uid. Moscow, Nauka. 1970:288.

JOURNAL OF GEOSCIENCES INSIGHTS                                                                           
2023, VOL. 1, ISSUE 1, pp. 1-8
https://doi.org/10.61577/jgi.2023.100001



�e study of modern tectonic stresses at di�erent scale levels is 
becoming increasingly important in the Earth sciences. �e 
determination of these �elds is very promising for new poses, 
not only purely scienti�c but also for prospecting, prognostic, 
geo-ecological, and other applied problems. Geodynamics uses 
data from geology, geophysics, and other sciences and makes 
extensive use of mathematical and physical modeling. 
Geodynamics studies the nature of the underlying processes 
that arise because of the Earth’s evolution and cause the 
movement of matter within the planet. �e study of the stress 
state of the Earth’s crust and mantle is one of its main tasks [1]. 
Stresses are a peculiar characteristic of the tone of the Earth’s 
crust and mantle, which determines the course of geological and 
geophysical processes. �e study of the stress state of the Earth’s 
crust has not only important scienti�c but also practical 
importance. �e fact that rocks experience great stress has long 
been well-known. Tunnel builders encountered it as early as the 
last century. Knowledge of the stressed state of rock massifs can 
increase the reliability of structures by several times.

 �e study of the stressed state of the Earth’s crust is carried 
out on the basis of the combined use of various methods. �e 
leading role belongs to geological methods of reconstruction of 
stress �elds, which took place in the past during the 
development of typical structural elements of the Earth’s crust. 
Since geological investigations alone are not su�cient to 
determine the distribution of stresses in the Earth’s crust, 

theoretical calculations and modeling of stress �elds are of 
great importance. A possible limitation of the model 
conclusions is connected with the inaccessibility of direct 
experiments at Earth depths for the establishment of real 
values of physical parameters.

 �ere are a su�cient number of publications assessing the 
stress state from earthquake mechanisms and geological data 
[2-5]. An extensive review of stresses worldwide is given in 
[6,7]. Some of this information is based on instrumental data, 
but most of it is derived from seismological data. Such data are 
also available for certain areas of Central Asia [8-13]. 
However, all of them are limited to local reconstruction of the 
geodynamic type of deformation 
(tension-shear-compression) and do not give a quantitative 
characteristic of the stress state of the Central Asian crust as a 
whole. Moreover, such works o�en do not take into account 
the basic provision of mechanics - equations of equilibrium 
and boundary conditions, which is rightly criticized by 
Mukhamediev [14,15].

 Gzovsky analyzed numerous studies by di�erent authors 
on tectonic movements during the last 30 million years and on 
seismicity over 50 years for the territory of the former USSR 
[16]. He estimated approximate values of possible maximal 
tangential stresses at depths of 15-20 km, where the sources of 
strong earthquakes are mostly concentrated. Particularly in 
the territory of Central Asia, they obtained values in the range 

from 0.1 to 1.5 (108 Pa), with the lowest values in the Turan 
plate and Central Kazakhstan shield and the highest values in 
the South Tien-Shan and Hindu-Kush parts of the 
Pamir-Hindukush zone In the Northern Tien Shan, Fergana 
intermountain trough, on the big part of Alay and on the 
territory of Pamir maximum tangential stress is estimated 
0.7-1 (108Pa), on the rest territory 0.4-0.6 (108Pa).

 To determine stresses according to the continuum 
equations, boundary conditions have to be set for equilibrium 
equations. Unfortunately, this is di�cult for geodynamic 
problems. At best, we know the fragmentary stresses extracted 
in wells. For a block of rock in natural occurrence, such 
information is usually absent or extremely unreliable since it 
can be derived only from speculative constructions and 
assumptions. Obtaining quantitative stress data based on a 
mathematical model is the main goal of our work.

 Historically, Central Asia underwent a pre-platform 
regime lasting approximately 330 million years from the 
beginning of the Cambrian to the end of the Permian, then a 
platform regime lasting approximately 220 million years to the 
beginning of the Neogene, and �nally, an orogenic regime 
lasting more than 27 million years. According to the 
predominant opinion of the experts, it is believed that the 
region’s tension is caused by the action on the Turan plate of 
the compressive forces of the Punjab wedge of Hindustan and 
the Arabian plate relative to the Eurasian plate. Extrapolation 
of the modern velocities of relative plate movement on the 
southern boundaries gives estimates of 25-46 km/mln years.

Methods
Analyzing the orientation and magnitudes of stresses in 
di�erent belts of the world, Nikolaev et al. concluded that the 
stress �eld in the lithosphere is the result of modern forces 
rather than residual stresses from past tectonic activity [17]. 
�erefore, we decided to build a model of the stress state of the 
Central Asian lithosphere based on the current picture of the 
deformation of its lithosphere. On the basis of elasticity 
equations, the inverse problem is solved. Atabekov de�ned the 
boundary conditions by means of which the received stresses 
on the territory of Central Asia do not contradict the 
empirical values described above [18]. According to the 
properties of stone in laboratory conditions, the elastic 
modulus of granite is approximately 39-40 MPa, and the end 
shear modulus is approximately 14-34 MPa [19]. From this 
follows the question of whether it is possible to apply the 
methods of the theory of elasticity at such stresses. However, at 
the depths of the Earth’s crust, rock strength increases linearly 
with increasing pressure (Byerlee’s law) [20-23]. �erefore, to 
calculate the stresses of the Earth’s crust, it is quite possible to 
apply the methods of the theory of elasticity. Our study of the 
earthquake energy determined on the basis of seismological 
data within the last 120 years shows that the strongest 
earthquakes in Central Asia with geographical coordinates 
(36°-46°E; 56°-76°N) (Figure 1) occur in the interval of 15-20 
km in the Earth’s crust (Figure 2). �e total energy was 
calculated from the earthquake magnitude using the known 
formulas LgE =10K and K =1.8 M+4 available for the territory 
of Central Asia.

Figure 1. Geographic location of the territory of Central Asia for geodynamic modeling.

�e stress state of the lithosphere is determined by momentum 
equilibrium equations: 

i,j=1,2,3
where σij and µij are the components of the force and moment 
stress tensor, comma j means di�erentiation by Cartesian 
coordinates xj, F (0,0, ρg) is the mass force, ρ is the density, g is 
the acceleration of gravity, εijk is the Levi – Civita tensor, and Mi 
is the mass moment having the size of the moment divided by 
the volume.

 �e main di�culty in the application of asymmetric theory 
lies in the di�culties encountered in determining the constants 
connecting the generalized stresses with the kinematic 
parameters for obtaining the constitutive relations of materials. 
�ere is a limited number of experiments that allow the 
identi�cation of six elastic Cosserat constants only for the 
simplest materials that are known. Considering this 
uncertainty, the rotation can be roughly expressed as before, 
using the formulas ωk =εijkui,j, and then µij =0 and formula (2) 
expresses the asymmetry of the stress tensor corresponding to 
the moment:

    (3)

 Equations (1-3) are supplemented with boundary 
conditions. �ere are no stresses on the Earth’s surface, and on 
the contact of the lithosphere with the asthenosphere, the 
normal stresses are equal to the weight of the overlying layers, 
and the tangential stresses can be assumed to be frictional 
forces arising from the relative movements of the more mobile 
asthenosphere with the lithosphere:

      (4)

                 (5)

 Here, H=H(x1,x2) is the relief of the Earth’s surface, h=h(x1,x2) 
is the lower boundary of the lithosphere, and ka is the 
coe�cient of friction of the lithosphere with the 
asthenosphere. �e problem was solved relative to the Eurasian 
plate, i.e., the displacements corresponding to the lateral 
boundary of the Eurasian plate were considered zero. �ere are 
no boundary conditions on the other lateral boundaries of the 
selected volume. According to tectonic data, the lithosphere of 
the whole region is divided into several conditionally 
homogeneous blocks, which di�er in physical parameters.

 In the Cartesian coordinate system placed on the Earth’s 
surface, the x1 axis is directed parallel, the x2 axis is directed 
along the meridian, and the x3 axis is directed vertically 
downwards. Geodynamic features of the problem statement, 
together with the geometric dimensions in plane and thickness 
of the lithosphere h, allow simpli�cation of the 
three-dimensional equations (1) by the following formula: 

                                                                                               (6)

 where the dash means averaging over x3. In geodynamics, 
the thickness of the lithosphere h is usually assumed to be 
constant and equal to 100 km (1). �is method reduces the 
solutions of the problem to a two-dimensional one but with the 
possibility of preserving some three-dimensional speci�city of 
the solutions. As a result, the following Lame equation was 
obtained for the averaged elastic displacements u1 and u2:       

                                                                         

      (7) 

                       

                       (8)
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                     (10)

                    

                     (11)
 

 Here, Ū-two-dimensional vector with components of 
averaged horizontal displacements, Δ - two-dimensional 
Laplace operator, ν - Poisson’s ratio, u3

h, u3
H vertical 

displacements at the base of the asthenosphere and on the 
surface of the earth. �e p parameter appears when applying 
formula (6) to the shear stress on the free surface of the earth 
and expresses the ratio of stresses on the surface and the 
expected average depth. �e derivatives Mi are averaged by 
formula (6).

 In the equations, linear variables are scaled with respect to 
h, and stresses and moments are scaled with respect to the 
average elastic shear modulus G0.

 In the geographical system of coordinates, Mi is expressed 
using the parameters of the failure plane angles of strike ϕ, slope 
λ, dip δ, and moment M0. According to Landau and Lifshitz 
[24], moment M0 is equal:

 M0 =µAU               (12)

 where µ is the rigidity in the source region, and A is the area 
over which the shear dislocation U has been averaged. �e 
moments Mi and M0 are expressed through the parameters of 
the failure plane according to Aki by the following formulas 
[25]:
          М1=-М0(cosδ cosλ sinφ -cos2δ sinλ cosφ),
          М2=-М0(cosδ cosλ cosφ +cos2δ sinλ sinφ),
    М3=М0(sinδ cosλ cos2φ +1/2 sin2δ sinλ sin2φ)    (13)                                                   

 For example, in the special case of a double dipole at the 
location (x10, x20, x30) of the nodal plane by the azimuth φ=0°, 
slope δ=90° and slip angle λ =90°, they are the next:

            M1=M3=0

                                                                                           (14)

 Here, M3 is expressed as an energetic model according to 
Riznichenko [26], where r0 is the relative radius of the reference 
sphere, ne� is the divergence coe�cient, and Δσ is the stress 
relieved.

 �e solution to the problem with incomplete boundary 
conditions is naturally not unique. Additional information is 
required to construct a solution to such problems. For instance, 
in the case of a single equation domain (i=1), the solution can be 
represented as a sum with coe�cients of elasticity problem 
eigenvalues and by selection of coe�cients by the least squares 
method involving some a priori information [27,28]. In some 
cases, the solution to Fredholm equations with respect to the 

boundary values, and then additional information is used. We 
do not question the existence of the set problem and acceptable 
solution constructed based on concrete geodynamic 
conditions. According to the hypothesis described above, the 
stress-strain state of the considered territory is caused by the 
compression of the Eurasian plate on one side and the Indian 
and Arabian plates on the other side. It would be naive to look 
for the solution of a heavy elastic prism resting on a �xed base, 
which receives the vertical displacements corresponding to the 
real relief of the earth under the action of lateral compressions. 
At least in the formulation of small deformations, this is 
nonsense because the height of the real terrain reaches 6-7 km. 
�erefore, by numerical experiment, Atabekov [18] decided to 
construct the boundary conditions in such a way that the 
obtained solution under these boundary conditions 
approximately coincided with the established empirical values 
in Gzovsky [16]. At the beginning of the experiment, the 
average σij in the right part of formulas [17,18] was used to 
solve the plane problem, the boundary conditions for which 
were selected preliminarily according to hypothetical data 
about the velocities of the Indian and Arabian plates relative to 
the Eurasian plate. Namely, the stress relations created by the 
Indian and Arabian plates at the southern corners of the Turan 
plate were taken equal to their velocity relations with uniform 
interpolation. Each stress on the right and le� sides of the 
rectangle, which limits our region in plan, was interpolated to 
the upper boundary of the Eurasian plate, which is assumed 
stationary. Figure 3 shows the corresponding boundary 
conditions for this problem and the obtained stress intensity 
isolines σi, determined by the formula: 

               (15)

 

 �e reconstructed stresses of an elastic problem are used 
as initial data for other problems. For example, to solve the 
problem of the modern movements of the Earth’s crust in 
territories of Central Asia by Stokes equations Atabekov [29]. 
�e tectonic �ow of mountain masses occurring in a relatively 
short time can provide important information. One of the 
important parameters in seismic zoning is the displacement 
rate gradient. In contrast to the tectonic stresses, which change 
weakly, the seismotectonic �ow of rock masses occurring in a 

relatively short time can provide important information for 
tectonic zoning. We apply to the Stokes equations similar 
procedures described above for the elastic problem. By relating 
the averaged displacement velocities h/t0, and stresses to μ0/t0 
(µ0-the average viscosity of the constituent regions, t0-the time 
scale), we obtain the following dimensionless Stokes equations:

 Formula (19) is obtained by averaging the continuity 
equation. In this case, the values of the vertical velocity on the 
lithosphere are taken equal to zero v3(x1, x2, h) =0.

 �e time scale is chosen from the equality of dimensionless 
tangential stresses in the Lamé and Stokes equations:

                                                                                         (20)
 
 

 �e boundary conditions for creep motion were chosen 
according to the modern velocities of the tectonic plates and 
stresses and the found stresses for interior points of the Lame 
equation. Equations (7) and (14) were solved by iteration. As a 
zero approximation, and u3h=0. In each iteration, the system 
was solved by the BEM. �e integral equations of the method 
have a standard form [30]: 

                                (21)

 Here,            ,               , Si are the boundaries of the 

two-dimensional domain Ωi, rj=xj-ξj, bj are the right-hand sides 
of the equations, and pij

*, wij
* are fundamental solutions. �e 

coe�cient cij(x) expresses the regularity of the boundary curve 
and the choice of the fundamental solution. For a regular curve, 
it is equal to π. In the program, it is calculated automatically 
based on the approximated broken line of the boundary curve 
and is equal to the internal angle of the boundary at point x. For 
the Lamé equations (w=ū), they have the following form (31):

                                                                          (22)

                                                      (23)

<i,j=1,2>.
For the Stokes equations (          ) Ladyzhenskaya [31]:

                                                                                      (24)

 

                                                                                                    (25)

�e averaged stresses in the case of creep �ow are constructed 
by the formula:

                                                                                                   (26)

Here’s

                                                           (27)

                                                                                             (28)

 Integral equations (21) contain both known and unknown 
boundary values. In numerical implementation, the calculated 
integrals with known boundary values of velocities and 
stresses are separated into matrix B, which constitutes the 
right-hand side of the algebraic equation. �e integrals with 
unknown displacements and stresses constitute matrix A. �e 
integrals over S are separated into the sum of integrals Si with 
di�erent physical parameters, taking into account the 
conjugation condition of stresses and velocities. �e 
boundaries Si are divided into linear elements, Ωi into 
triangles, the vertices of which are interior and boundary 
points.

Results
�e search for the solution of the main problem is reduced to 
the solution of a number of direct problems by varying the 
boundary stresses. In the initial stage, the boundary conditions 
were taken as for the plane problem. �e stresses obtained 
from the solution of the previous cycle were on the right side of 
(7-9) in the subsequent cycle. Using the formula (11), the 
corresponding modi�ed relief was constructed as u3 (x1,x2, H). 
Figure 4 shows some variants of the relief obtained in the 
numerical experiment. �e �rst picture built on the 
topological map of Central Asia was adopted for the initial 
stage of the numerical experiment. In each cycle, the boundary 
conditions were varied so as not to spoil the real relief and to 
obtain stresses close to the empirical data Gzovsky [16]. �is 
was the essence of the numerical experiment. 

 Currently, not the entire territory of Central Asia is covered 
by a network of GPS data that serve to monitor the movement of 
the Earth’s crust to analyse and assess the stress state of the 
geological environment and forecast changes in the subsurface 
under the in�uence of natural and anthropogenic factors. 
However, unlike horizontal velocities for which there are �xed 
objects taken as reference points, monitoring vertical velocities 
is di�cult. As a result of solving the Stokes problem, we can 
construct by formulas (16-20) a �eld of vertical displacement 
velocities, which are not instrumentally available everywhere. 
�erefore, the creation of a numerical model of the stress state 
of the Central Asian territory serves as an invaluable 
contribution of mechanics to geodetic surveys.

 One of the seismically active territories of Uzbekistan is the 
Ferghana depression (marked with a triangle in Figure 1), 
bounded by active Talas-Ferghana, 
Aksu-Maydantal-Bogonalin, and Gisar-Kokshal faults, 
containing North Ferghana and South Ferghana deep faults, 

which determine the main tectonic weather in this region. 
Within its limits, there is a fairly large reserve of hydrocarbons. 
During the historical period, strong earthquakes with 
magnitudes of M> 7 occurred here. Its main tectonic feature is 
that, under near-meridian compression, the depression has a 
ri� character, characteristic of extension zones. Such features 
of the geodynamics of the region require further clari�cation. 
For modeling, the territory was divided into somewhat 
conditionally homogeneous blocks, as the boundaries of which 
we took deep faults. As a result of the calculation by formulas 
(16-20, 24-28), the �eld of stresses and velocities of the region 
was constructed. Figure 5 shows the averaged horizontal shear 
stresses at depths of 15 km in this area. �ey mark the most 
vulnerable places where there may be dangerous earthquakes 
in the future. Figure 6 shows the vertical movement velocity 
calculated by formula (19). �ey complement the available 
GPS data and, together with stresses, are valuable tectonic 
material for seismic hazard prediction. 
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 �e formulas (7-11, 21-23) make it possible, on average, to 
estimate changes in the stress state of the Earth’s crust due to 
earthquakes. Using simpli�ed models of the earthquake focus 
mechanism φ=0°, δ=90°, λ =90°, we can estimate how the shear 
stresses of the Earth’s crust in Central Asia approximately 
change during speci�c earthquakes. For the example of a 
recent earthquake that occurred in the territory of Tajikistan 
(38.070N|73.200E shown as a polygon in Figure 1) on 
23.02.2023, 00:37:19 GMT, with a magnitude of M0=6.8 and a 
focal depth of h=21 km, the stresses were calculated (Figure 7). 
In this case, this applies because this earthquake occurred 
along an active fault that is located subparallel. As a variation, 
the stress di�erence obtained by equations (8-9) at zero and 
nonzero values of the moments were taken.

 �us, the proposed methods can be applied to �nd the 
stress-strain state of other regions, taking into account their 
peculiarities.

Conclusions
Based on the continuum equations, a model of the stress state of 
the Central Asian lithosphere has been created. Given the 
peculiarities of geodynamic problems, the three-dimensional 
Lame and Stokes equations are averaged in-depth, taking into 
account the topography of the region. Numerical solutions were 
obtained using the method of boundary integral equations for 
zonally homogeneous bodies. �e stresses obtained by the 
solution of the Lamé problem are used to reconstruct the 
modern movements of the Earth’s crust in the local territory of 
Central Asia using the Stokes equations. Stresses and horizontal 
and vertical displacement velocities serve as additional 
information for monitoring the Earth’s interior of Central Asia.
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�e study of modern tectonic stresses at di�erent scale levels is 
becoming increasingly important in the Earth sciences. �e 
determination of these �elds is very promising for new poses, 
not only purely scienti�c but also for prospecting, prognostic, 
geo-ecological, and other applied problems. Geodynamics uses 
data from geology, geophysics, and other sciences and makes 
extensive use of mathematical and physical modeling. 
Geodynamics studies the nature of the underlying processes 
that arise because of the Earth’s evolution and cause the 
movement of matter within the planet. �e study of the stress 
state of the Earth’s crust and mantle is one of its main tasks [1]. 
Stresses are a peculiar characteristic of the tone of the Earth’s 
crust and mantle, which determines the course of geological and 
geophysical processes. �e study of the stress state of the Earth’s 
crust has not only important scienti�c but also practical 
importance. �e fact that rocks experience great stress has long 
been well-known. Tunnel builders encountered it as early as the 
last century. Knowledge of the stressed state of rock massifs can 
increase the reliability of structures by several times.

 �e study of the stressed state of the Earth’s crust is carried 
out on the basis of the combined use of various methods. �e 
leading role belongs to geological methods of reconstruction of 
stress �elds, which took place in the past during the 
development of typical structural elements of the Earth’s crust. 
Since geological investigations alone are not su�cient to 
determine the distribution of stresses in the Earth’s crust, 

theoretical calculations and modeling of stress �elds are of 
great importance. A possible limitation of the model 
conclusions is connected with the inaccessibility of direct 
experiments at Earth depths for the establishment of real 
values of physical parameters.

 �ere are a su�cient number of publications assessing the 
stress state from earthquake mechanisms and geological data 
[2-5]. An extensive review of stresses worldwide is given in 
[6,7]. Some of this information is based on instrumental data, 
but most of it is derived from seismological data. Such data are 
also available for certain areas of Central Asia [8-13]. 
However, all of them are limited to local reconstruction of the 
geodynamic type of deformation 
(tension-shear-compression) and do not give a quantitative 
characteristic of the stress state of the Central Asian crust as a 
whole. Moreover, such works o�en do not take into account 
the basic provision of mechanics - equations of equilibrium 
and boundary conditions, which is rightly criticized by 
Mukhamediev [14,15].

 Gzovsky analyzed numerous studies by di�erent authors 
on tectonic movements during the last 30 million years and on 
seismicity over 50 years for the territory of the former USSR 
[16]. He estimated approximate values of possible maximal 
tangential stresses at depths of 15-20 km, where the sources of 
strong earthquakes are mostly concentrated. Particularly in 
the territory of Central Asia, they obtained values in the range 

from 0.1 to 1.5 (108 Pa), with the lowest values in the Turan 
plate and Central Kazakhstan shield and the highest values in 
the South Tien-Shan and Hindu-Kush parts of the 
Pamir-Hindukush zone In the Northern Tien Shan, Fergana 
intermountain trough, on the big part of Alay and on the 
territory of Pamir maximum tangential stress is estimated 
0.7-1 (108Pa), on the rest territory 0.4-0.6 (108Pa).

 To determine stresses according to the continuum 
equations, boundary conditions have to be set for equilibrium 
equations. Unfortunately, this is di�cult for geodynamic 
problems. At best, we know the fragmentary stresses extracted 
in wells. For a block of rock in natural occurrence, such 
information is usually absent or extremely unreliable since it 
can be derived only from speculative constructions and 
assumptions. Obtaining quantitative stress data based on a 
mathematical model is the main goal of our work.

 Historically, Central Asia underwent a pre-platform 
regime lasting approximately 330 million years from the 
beginning of the Cambrian to the end of the Permian, then a 
platform regime lasting approximately 220 million years to the 
beginning of the Neogene, and �nally, an orogenic regime 
lasting more than 27 million years. According to the 
predominant opinion of the experts, it is believed that the 
region’s tension is caused by the action on the Turan plate of 
the compressive forces of the Punjab wedge of Hindustan and 
the Arabian plate relative to the Eurasian plate. Extrapolation 
of the modern velocities of relative plate movement on the 
southern boundaries gives estimates of 25-46 km/mln years.

Methods
Analyzing the orientation and magnitudes of stresses in 
di�erent belts of the world, Nikolaev et al. concluded that the 
stress �eld in the lithosphere is the result of modern forces 
rather than residual stresses from past tectonic activity [17]. 
�erefore, we decided to build a model of the stress state of the 
Central Asian lithosphere based on the current picture of the 
deformation of its lithosphere. On the basis of elasticity 
equations, the inverse problem is solved. Atabekov de�ned the 
boundary conditions by means of which the received stresses 
on the territory of Central Asia do not contradict the 
empirical values described above [18]. According to the 
properties of stone in laboratory conditions, the elastic 
modulus of granite is approximately 39-40 MPa, and the end 
shear modulus is approximately 14-34 MPa [19]. From this 
follows the question of whether it is possible to apply the 
methods of the theory of elasticity at such stresses. However, at 
the depths of the Earth’s crust, rock strength increases linearly 
with increasing pressure (Byerlee’s law) [20-23]. �erefore, to 
calculate the stresses of the Earth’s crust, it is quite possible to 
apply the methods of the theory of elasticity. Our study of the 
earthquake energy determined on the basis of seismological 
data within the last 120 years shows that the strongest 
earthquakes in Central Asia with geographical coordinates 
(36°-46°E; 56°-76°N) (Figure 1) occur in the interval of 15-20 
km in the Earth’s crust (Figure 2). �e total energy was 
calculated from the earthquake magnitude using the known 
formulas LgE =10K and K =1.8 M+4 available for the territory 
of Central Asia.

Figure 2. Released total seismic energy E by depth h over the last 120 years in the crust of Central Asia.

�e stress state of the lithosphere is determined by momentum 
equilibrium equations: 

i,j=1,2,3
where σij and µij are the components of the force and moment 
stress tensor, comma j means di�erentiation by Cartesian 
coordinates xj, F (0,0, ρg) is the mass force, ρ is the density, g is 
the acceleration of gravity, εijk is the Levi – Civita tensor, and Mi 
is the mass moment having the size of the moment divided by 
the volume.

 �e main di�culty in the application of asymmetric theory 
lies in the di�culties encountered in determining the constants 
connecting the generalized stresses with the kinematic 
parameters for obtaining the constitutive relations of materials. 
�ere is a limited number of experiments that allow the 
identi�cation of six elastic Cosserat constants only for the 
simplest materials that are known. Considering this 
uncertainty, the rotation can be roughly expressed as before, 
using the formulas ωk =εijkui,j, and then µij =0 and formula (2) 
expresses the asymmetry of the stress tensor corresponding to 
the moment:

    (3)

 Equations (1-3) are supplemented with boundary 
conditions. �ere are no stresses on the Earth’s surface, and on 
the contact of the lithosphere with the asthenosphere, the 
normal stresses are equal to the weight of the overlying layers, 
and the tangential stresses can be assumed to be frictional 
forces arising from the relative movements of the more mobile 
asthenosphere with the lithosphere:

      (4)

                 (5)

 Here, H=H(x1,x2) is the relief of the Earth’s surface, h=h(x1,x2) 
is the lower boundary of the lithosphere, and ka is the 
coe�cient of friction of the lithosphere with the 
asthenosphere. �e problem was solved relative to the Eurasian 
plate, i.e., the displacements corresponding to the lateral 
boundary of the Eurasian plate were considered zero. �ere are 
no boundary conditions on the other lateral boundaries of the 
selected volume. According to tectonic data, the lithosphere of 
the whole region is divided into several conditionally 
homogeneous blocks, which di�er in physical parameters.

 In the Cartesian coordinate system placed on the Earth’s 
surface, the x1 axis is directed parallel, the x2 axis is directed 
along the meridian, and the x3 axis is directed vertically 
downwards. Geodynamic features of the problem statement, 
together with the geometric dimensions in plane and thickness 
of the lithosphere h, allow simpli�cation of the 
three-dimensional equations (1) by the following formula: 

                                                                                               (6)

 where the dash means averaging over x3. In geodynamics, 
the thickness of the lithosphere h is usually assumed to be 
constant and equal to 100 km (1). �is method reduces the 
solutions of the problem to a two-dimensional one but with the 
possibility of preserving some three-dimensional speci�city of 
the solutions. As a result, the following Lame equation was 
obtained for the averaged elastic displacements u1 and u2:       

                                                                         

      (7) 
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 Here, Ū-two-dimensional vector with components of 
averaged horizontal displacements, Δ - two-dimensional 
Laplace operator, ν - Poisson’s ratio, u3

h, u3
H vertical 

displacements at the base of the asthenosphere and on the 
surface of the earth. �e p parameter appears when applying 
formula (6) to the shear stress on the free surface of the earth 
and expresses the ratio of stresses on the surface and the 
expected average depth. �e derivatives Mi are averaged by 
formula (6).

 In the equations, linear variables are scaled with respect to 
h, and stresses and moments are scaled with respect to the 
average elastic shear modulus G0.

 In the geographical system of coordinates, Mi is expressed 
using the parameters of the failure plane angles of strike ϕ, slope 
λ, dip δ, and moment M0. According to Landau and Lifshitz 
[24], moment M0 is equal:

 M0 =µAU               (12)

 where µ is the rigidity in the source region, and A is the area 
over which the shear dislocation U has been averaged. �e 
moments Mi and M0 are expressed through the parameters of 
the failure plane according to Aki by the following formulas 
[25]:
          М1=-М0(cosδ cosλ sinφ -cos2δ sinλ cosφ),
          М2=-М0(cosδ cosλ cosφ +cos2δ sinλ sinφ),
    М3=М0(sinδ cosλ cos2φ +1/2 sin2δ sinλ sin2φ)    (13)                                                   

 For example, in the special case of a double dipole at the 
location (x10, x20, x30) of the nodal plane by the azimuth φ=0°, 
slope δ=90° and slip angle λ =90°, they are the next:

            M1=M3=0

                                                                                           (14)

 Here, M3 is expressed as an energetic model according to 
Riznichenko [26], where r0 is the relative radius of the reference 
sphere, ne� is the divergence coe�cient, and Δσ is the stress 
relieved.

 �e solution to the problem with incomplete boundary 
conditions is naturally not unique. Additional information is 
required to construct a solution to such problems. For instance, 
in the case of a single equation domain (i=1), the solution can be 
represented as a sum with coe�cients of elasticity problem 
eigenvalues and by selection of coe�cients by the least squares 
method involving some a priori information [27,28]. In some 
cases, the solution to Fredholm equations with respect to the 

boundary values, and then additional information is used. We 
do not question the existence of the set problem and acceptable 
solution constructed based on concrete geodynamic 
conditions. According to the hypothesis described above, the 
stress-strain state of the considered territory is caused by the 
compression of the Eurasian plate on one side and the Indian 
and Arabian plates on the other side. It would be naive to look 
for the solution of a heavy elastic prism resting on a �xed base, 
which receives the vertical displacements corresponding to the 
real relief of the earth under the action of lateral compressions. 
At least in the formulation of small deformations, this is 
nonsense because the height of the real terrain reaches 6-7 km. 
�erefore, by numerical experiment, Atabekov [18] decided to 
construct the boundary conditions in such a way that the 
obtained solution under these boundary conditions 
approximately coincided with the established empirical values 
in Gzovsky [16]. At the beginning of the experiment, the 
average σij in the right part of formulas [17,18] was used to 
solve the plane problem, the boundary conditions for which 
were selected preliminarily according to hypothetical data 
about the velocities of the Indian and Arabian plates relative to 
the Eurasian plate. Namely, the stress relations created by the 
Indian and Arabian plates at the southern corners of the Turan 
plate were taken equal to their velocity relations with uniform 
interpolation. Each stress on the right and le� sides of the 
rectangle, which limits our region in plan, was interpolated to 
the upper boundary of the Eurasian plate, which is assumed 
stationary. Figure 3 shows the corresponding boundary 
conditions for this problem and the obtained stress intensity 
isolines σi, determined by the formula: 

               (15)

 

 �e reconstructed stresses of an elastic problem are used 
as initial data for other problems. For example, to solve the 
problem of the modern movements of the Earth’s crust in 
territories of Central Asia by Stokes equations Atabekov [29]. 
�e tectonic �ow of mountain masses occurring in a relatively 
short time can provide important information. One of the 
important parameters in seismic zoning is the displacement 
rate gradient. In contrast to the tectonic stresses, which change 
weakly, the seismotectonic �ow of rock masses occurring in a 

relatively short time can provide important information for 
tectonic zoning. We apply to the Stokes equations similar 
procedures described above for the elastic problem. By relating 
the averaged displacement velocities h/t0, and stresses to μ0/t0 
(µ0-the average viscosity of the constituent regions, t0-the time 
scale), we obtain the following dimensionless Stokes equations:

 Formula (19) is obtained by averaging the continuity 
equation. In this case, the values of the vertical velocity on the 
lithosphere are taken equal to zero v3(x1, x2, h) =0.

 �e time scale is chosen from the equality of dimensionless 
tangential stresses in the Lamé and Stokes equations:

                                                                                         (20)
 
 

 �e boundary conditions for creep motion were chosen 
according to the modern velocities of the tectonic plates and 
stresses and the found stresses for interior points of the Lame 
equation. Equations (7) and (14) were solved by iteration. As a 
zero approximation, and u3h=0. In each iteration, the system 
was solved by the BEM. �e integral equations of the method 
have a standard form [30]: 

                                (21)

 Here,            ,               , Si are the boundaries of the 

two-dimensional domain Ωi, rj=xj-ξj, bj are the right-hand sides 
of the equations, and pij

*, wij
* are fundamental solutions. �e 

coe�cient cij(x) expresses the regularity of the boundary curve 
and the choice of the fundamental solution. For a regular curve, 
it is equal to π. In the program, it is calculated automatically 
based on the approximated broken line of the boundary curve 
and is equal to the internal angle of the boundary at point x. For 
the Lamé equations (w=ū), they have the following form (31):

                                                                          (22)

                                                      (23)

<i,j=1,2>.
For the Stokes equations (          ) Ladyzhenskaya [31]:

                                                                                      (24)

 

                                                                                                    (25)

�e averaged stresses in the case of creep �ow are constructed 
by the formula:

                                                                                                   (26)

Here’s

                                                           (27)

                                                                                             (28)

 Integral equations (21) contain both known and unknown 
boundary values. In numerical implementation, the calculated 
integrals with known boundary values of velocities and 
stresses are separated into matrix B, which constitutes the 
right-hand side of the algebraic equation. �e integrals with 
unknown displacements and stresses constitute matrix A. �e 
integrals over S are separated into the sum of integrals Si with 
di�erent physical parameters, taking into account the 
conjugation condition of stresses and velocities. �e 
boundaries Si are divided into linear elements, Ωi into 
triangles, the vertices of which are interior and boundary 
points.

Results
�e search for the solution of the main problem is reduced to 
the solution of a number of direct problems by varying the 
boundary stresses. In the initial stage, the boundary conditions 
were taken as for the plane problem. �e stresses obtained 
from the solution of the previous cycle were on the right side of 
(7-9) in the subsequent cycle. Using the formula (11), the 
corresponding modi�ed relief was constructed as u3 (x1,x2, H). 
Figure 4 shows some variants of the relief obtained in the 
numerical experiment. �e �rst picture built on the 
topological map of Central Asia was adopted for the initial 
stage of the numerical experiment. In each cycle, the boundary 
conditions were varied so as not to spoil the real relief and to 
obtain stresses close to the empirical data Gzovsky [16]. �is 
was the essence of the numerical experiment. 

 Currently, not the entire territory of Central Asia is covered 
by a network of GPS data that serve to monitor the movement of 
the Earth’s crust to analyse and assess the stress state of the 
geological environment and forecast changes in the subsurface 
under the in�uence of natural and anthropogenic factors. 
However, unlike horizontal velocities for which there are �xed 
objects taken as reference points, monitoring vertical velocities 
is di�cult. As a result of solving the Stokes problem, we can 
construct by formulas (16-20) a �eld of vertical displacement 
velocities, which are not instrumentally available everywhere. 
�erefore, the creation of a numerical model of the stress state 
of the Central Asian territory serves as an invaluable 
contribution of mechanics to geodetic surveys.

 One of the seismically active territories of Uzbekistan is the 
Ferghana depression (marked with a triangle in Figure 1), 
bounded by active Talas-Ferghana, 
Aksu-Maydantal-Bogonalin, and Gisar-Kokshal faults, 
containing North Ferghana and South Ferghana deep faults, 

which determine the main tectonic weather in this region. 
Within its limits, there is a fairly large reserve of hydrocarbons. 
During the historical period, strong earthquakes with 
magnitudes of M> 7 occurred here. Its main tectonic feature is 
that, under near-meridian compression, the depression has a 
ri� character, characteristic of extension zones. Such features 
of the geodynamics of the region require further clari�cation. 
For modeling, the territory was divided into somewhat 
conditionally homogeneous blocks, as the boundaries of which 
we took deep faults. As a result of the calculation by formulas 
(16-20, 24-28), the �eld of stresses and velocities of the region 
was constructed. Figure 5 shows the averaged horizontal shear 
stresses at depths of 15 km in this area. �ey mark the most 
vulnerable places where there may be dangerous earthquakes 
in the future. Figure 6 shows the vertical movement velocity 
calculated by formula (19). �ey complement the available 
GPS data and, together with stresses, are valuable tectonic 
material for seismic hazard prediction. 
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 �e formulas (7-11, 21-23) make it possible, on average, to 
estimate changes in the stress state of the Earth’s crust due to 
earthquakes. Using simpli�ed models of the earthquake focus 
mechanism φ=0°, δ=90°, λ =90°, we can estimate how the shear 
stresses of the Earth’s crust in Central Asia approximately 
change during speci�c earthquakes. For the example of a 
recent earthquake that occurred in the territory of Tajikistan 
(38.070N|73.200E shown as a polygon in Figure 1) on 
23.02.2023, 00:37:19 GMT, with a magnitude of M0=6.8 and a 
focal depth of h=21 km, the stresses were calculated (Figure 7). 
In this case, this applies because this earthquake occurred 
along an active fault that is located subparallel. As a variation, 
the stress di�erence obtained by equations (8-9) at zero and 
nonzero values of the moments were taken.

 �us, the proposed methods can be applied to �nd the 
stress-strain state of other regions, taking into account their 
peculiarities.

Conclusions
Based on the continuum equations, a model of the stress state of 
the Central Asian lithosphere has been created. Given the 
peculiarities of geodynamic problems, the three-dimensional 
Lame and Stokes equations are averaged in-depth, taking into 
account the topography of the region. Numerical solutions were 
obtained using the method of boundary integral equations for 
zonally homogeneous bodies. �e stresses obtained by the 
solution of the Lamé problem are used to reconstruct the 
modern movements of the Earth’s crust in the local territory of 
Central Asia using the Stokes equations. Stresses and horizontal 
and vertical displacement velocities serve as additional 
information for monitoring the Earth’s interior of Central Asia.
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�e study of modern tectonic stresses at di�erent scale levels is 
becoming increasingly important in the Earth sciences. �e 
determination of these �elds is very promising for new poses, 
not only purely scienti�c but also for prospecting, prognostic, 
geo-ecological, and other applied problems. Geodynamics uses 
data from geology, geophysics, and other sciences and makes 
extensive use of mathematical and physical modeling. 
Geodynamics studies the nature of the underlying processes 
that arise because of the Earth’s evolution and cause the 
movement of matter within the planet. �e study of the stress 
state of the Earth’s crust and mantle is one of its main tasks [1]. 
Stresses are a peculiar characteristic of the tone of the Earth’s 
crust and mantle, which determines the course of geological and 
geophysical processes. �e study of the stress state of the Earth’s 
crust has not only important scienti�c but also practical 
importance. �e fact that rocks experience great stress has long 
been well-known. Tunnel builders encountered it as early as the 
last century. Knowledge of the stressed state of rock massifs can 
increase the reliability of structures by several times.

 �e study of the stressed state of the Earth’s crust is carried 
out on the basis of the combined use of various methods. �e 
leading role belongs to geological methods of reconstruction of 
stress �elds, which took place in the past during the 
development of typical structural elements of the Earth’s crust. 
Since geological investigations alone are not su�cient to 
determine the distribution of stresses in the Earth’s crust, 

theoretical calculations and modeling of stress �elds are of 
great importance. A possible limitation of the model 
conclusions is connected with the inaccessibility of direct 
experiments at Earth depths for the establishment of real 
values of physical parameters.

 �ere are a su�cient number of publications assessing the 
stress state from earthquake mechanisms and geological data 
[2-5]. An extensive review of stresses worldwide is given in 
[6,7]. Some of this information is based on instrumental data, 
but most of it is derived from seismological data. Such data are 
also available for certain areas of Central Asia [8-13]. 
However, all of them are limited to local reconstruction of the 
geodynamic type of deformation 
(tension-shear-compression) and do not give a quantitative 
characteristic of the stress state of the Central Asian crust as a 
whole. Moreover, such works o�en do not take into account 
the basic provision of mechanics - equations of equilibrium 
and boundary conditions, which is rightly criticized by 
Mukhamediev [14,15].

 Gzovsky analyzed numerous studies by di�erent authors 
on tectonic movements during the last 30 million years and on 
seismicity over 50 years for the territory of the former USSR 
[16]. He estimated approximate values of possible maximal 
tangential stresses at depths of 15-20 km, where the sources of 
strong earthquakes are mostly concentrated. Particularly in 
the territory of Central Asia, they obtained values in the range 

from 0.1 to 1.5 (108 Pa), with the lowest values in the Turan 
plate and Central Kazakhstan shield and the highest values in 
the South Tien-Shan and Hindu-Kush parts of the 
Pamir-Hindukush zone In the Northern Tien Shan, Fergana 
intermountain trough, on the big part of Alay and on the 
territory of Pamir maximum tangential stress is estimated 
0.7-1 (108Pa), on the rest territory 0.4-0.6 (108Pa).

 To determine stresses according to the continuum 
equations, boundary conditions have to be set for equilibrium 
equations. Unfortunately, this is di�cult for geodynamic 
problems. At best, we know the fragmentary stresses extracted 
in wells. For a block of rock in natural occurrence, such 
information is usually absent or extremely unreliable since it 
can be derived only from speculative constructions and 
assumptions. Obtaining quantitative stress data based on a 
mathematical model is the main goal of our work.

 Historically, Central Asia underwent a pre-platform 
regime lasting approximately 330 million years from the 
beginning of the Cambrian to the end of the Permian, then a 
platform regime lasting approximately 220 million years to the 
beginning of the Neogene, and �nally, an orogenic regime 
lasting more than 27 million years. According to the 
predominant opinion of the experts, it is believed that the 
region’s tension is caused by the action on the Turan plate of 
the compressive forces of the Punjab wedge of Hindustan and 
the Arabian plate relative to the Eurasian plate. Extrapolation 
of the modern velocities of relative plate movement on the 
southern boundaries gives estimates of 25-46 km/mln years.

Methods
Analyzing the orientation and magnitudes of stresses in 
di�erent belts of the world, Nikolaev et al. concluded that the 
stress �eld in the lithosphere is the result of modern forces 
rather than residual stresses from past tectonic activity [17]. 
�erefore, we decided to build a model of the stress state of the 
Central Asian lithosphere based on the current picture of the 
deformation of its lithosphere. On the basis of elasticity 
equations, the inverse problem is solved. Atabekov de�ned the 
boundary conditions by means of which the received stresses 
on the territory of Central Asia do not contradict the 
empirical values described above [18]. According to the 
properties of stone in laboratory conditions, the elastic 
modulus of granite is approximately 39-40 MPa, and the end 
shear modulus is approximately 14-34 MPa [19]. From this 
follows the question of whether it is possible to apply the 
methods of the theory of elasticity at such stresses. However, at 
the depths of the Earth’s crust, rock strength increases linearly 
with increasing pressure (Byerlee’s law) [20-23]. �erefore, to 
calculate the stresses of the Earth’s crust, it is quite possible to 
apply the methods of the theory of elasticity. Our study of the 
earthquake energy determined on the basis of seismological 
data within the last 120 years shows that the strongest 
earthquakes in Central Asia with geographical coordinates 
(36°-46°E; 56°-76°N) (Figure 1) occur in the interval of 15-20 
km in the Earth’s crust (Figure 2). �e total energy was 
calculated from the earthquake magnitude using the known 
formulas LgE =10K and K =1.8 M+4 available for the territory 
of Central Asia.

�e stress state of the lithosphere is determined by momentum 
equilibrium equations: 

i,j=1,2,3
where σij and µij are the components of the force and moment 
stress tensor, comma j means di�erentiation by Cartesian 
coordinates xj, F (0,0, ρg) is the mass force, ρ is the density, g is 
the acceleration of gravity, εijk is the Levi – Civita tensor, and Mi 
is the mass moment having the size of the moment divided by 
the volume.

 �e main di�culty in the application of asymmetric theory 
lies in the di�culties encountered in determining the constants 
connecting the generalized stresses with the kinematic 
parameters for obtaining the constitutive relations of materials. 
�ere is a limited number of experiments that allow the 
identi�cation of six elastic Cosserat constants only for the 
simplest materials that are known. Considering this 
uncertainty, the rotation can be roughly expressed as before, 
using the formulas ωk =εijkui,j, and then µij =0 and formula (2) 
expresses the asymmetry of the stress tensor corresponding to 
the moment:

    (3)

 Equations (1-3) are supplemented with boundary 
conditions. �ere are no stresses on the Earth’s surface, and on 
the contact of the lithosphere with the asthenosphere, the 
normal stresses are equal to the weight of the overlying layers, 
and the tangential stresses can be assumed to be frictional 
forces arising from the relative movements of the more mobile 
asthenosphere with the lithosphere:

      (4)

                 (5)

 Here, H=H(x1,x2) is the relief of the Earth’s surface, h=h(x1,x2) 
is the lower boundary of the lithosphere, and ka is the 
coe�cient of friction of the lithosphere with the 
asthenosphere. �e problem was solved relative to the Eurasian 
plate, i.e., the displacements corresponding to the lateral 
boundary of the Eurasian plate were considered zero. �ere are 
no boundary conditions on the other lateral boundaries of the 
selected volume. According to tectonic data, the lithosphere of 
the whole region is divided into several conditionally 
homogeneous blocks, which di�er in physical parameters.

 In the Cartesian coordinate system placed on the Earth’s 
surface, the x1 axis is directed parallel, the x2 axis is directed 
along the meridian, and the x3 axis is directed vertically 
downwards. Geodynamic features of the problem statement, 
together with the geometric dimensions in plane and thickness 
of the lithosphere h, allow simpli�cation of the 
three-dimensional equations (1) by the following formula: 

                                                                                               (6)

 where the dash means averaging over x3. In geodynamics, 
the thickness of the lithosphere h is usually assumed to be 
constant and equal to 100 km (1). �is method reduces the 
solutions of the problem to a two-dimensional one but with the 
possibility of preserving some three-dimensional speci�city of 
the solutions. As a result, the following Lame equation was 
obtained for the averaged elastic displacements u1 and u2:       

                                                                         

      (7) 

                       

                       (8)
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 Here, Ū-two-dimensional vector with components of 
averaged horizontal displacements, Δ - two-dimensional 
Laplace operator, ν - Poisson’s ratio, u3

h, u3
H vertical 

displacements at the base of the asthenosphere and on the 
surface of the earth. �e p parameter appears when applying 
formula (6) to the shear stress on the free surface of the earth 
and expresses the ratio of stresses on the surface and the 
expected average depth. �e derivatives Mi are averaged by 
formula (6).

 In the equations, linear variables are scaled with respect to 
h, and stresses and moments are scaled with respect to the 
average elastic shear modulus G0.

 In the geographical system of coordinates, Mi is expressed 
using the parameters of the failure plane angles of strike ϕ, slope 
λ, dip δ, and moment M0. According to Landau and Lifshitz 
[24], moment M0 is equal:

 M0 =µAU               (12)

 where µ is the rigidity in the source region, and A is the area 
over which the shear dislocation U has been averaged. �e 
moments Mi and M0 are expressed through the parameters of 
the failure plane according to Aki by the following formulas 
[25]:
          М1=-М0(cosδ cosλ sinφ -cos2δ sinλ cosφ),
          М2=-М0(cosδ cosλ cosφ +cos2δ sinλ sinφ),
    М3=М0(sinδ cosλ cos2φ +1/2 sin2δ sinλ sin2φ)    (13)                                                   

 For example, in the special case of a double dipole at the 
location (x10, x20, x30) of the nodal plane by the azimuth φ=0°, 
slope δ=90° and slip angle λ =90°, they are the next:

            M1=M3=0

                                                                                           (14)

 Here, M3 is expressed as an energetic model according to 
Riznichenko [26], where r0 is the relative radius of the reference 
sphere, ne� is the divergence coe�cient, and Δσ is the stress 
relieved.

 �e solution to the problem with incomplete boundary 
conditions is naturally not unique. Additional information is 
required to construct a solution to such problems. For instance, 
in the case of a single equation domain (i=1), the solution can be 
represented as a sum with coe�cients of elasticity problem 
eigenvalues and by selection of coe�cients by the least squares 
method involving some a priori information [27,28]. In some 
cases, the solution to Fredholm equations with respect to the 

boundary values, and then additional information is used. We 
do not question the existence of the set problem and acceptable 
solution constructed based on concrete geodynamic 
conditions. According to the hypothesis described above, the 
stress-strain state of the considered territory is caused by the 
compression of the Eurasian plate on one side and the Indian 
and Arabian plates on the other side. It would be naive to look 
for the solution of a heavy elastic prism resting on a �xed base, 
which receives the vertical displacements corresponding to the 
real relief of the earth under the action of lateral compressions. 
At least in the formulation of small deformations, this is 
nonsense because the height of the real terrain reaches 6-7 km. 
�erefore, by numerical experiment, Atabekov [18] decided to 
construct the boundary conditions in such a way that the 
obtained solution under these boundary conditions 
approximately coincided with the established empirical values 
in Gzovsky [16]. At the beginning of the experiment, the 
average σij in the right part of formulas [17,18] was used to 
solve the plane problem, the boundary conditions for which 
were selected preliminarily according to hypothetical data 
about the velocities of the Indian and Arabian plates relative to 
the Eurasian plate. Namely, the stress relations created by the 
Indian and Arabian plates at the southern corners of the Turan 
plate were taken equal to their velocity relations with uniform 
interpolation. Each stress on the right and le� sides of the 
rectangle, which limits our region in plan, was interpolated to 
the upper boundary of the Eurasian plate, which is assumed 
stationary. Figure 3 shows the corresponding boundary 
conditions for this problem and the obtained stress intensity 
isolines σi, determined by the formula: 

               (15)

 

 �e reconstructed stresses of an elastic problem are used 
as initial data for other problems. For example, to solve the 
problem of the modern movements of the Earth’s crust in 
territories of Central Asia by Stokes equations Atabekov [29]. 
�e tectonic �ow of mountain masses occurring in a relatively 
short time can provide important information. One of the 
important parameters in seismic zoning is the displacement 
rate gradient. In contrast to the tectonic stresses, which change 
weakly, the seismotectonic �ow of rock masses occurring in a 

relatively short time can provide important information for 
tectonic zoning. We apply to the Stokes equations similar 
procedures described above for the elastic problem. By relating 
the averaged displacement velocities h/t0, and stresses to μ0/t0 
(µ0-the average viscosity of the constituent regions, t0-the time 
scale), we obtain the following dimensionless Stokes equations:
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Figure 3. Isolines of stress intensity σi (in 102 MPa) from the solution 
of the generalized planar stress state problem, with boundary 
conditions shown in the figure. The arrows indicate the directions of 
the forces, the inverse T arrow means no displacement, and the T with 
arrows means a slippery boundary.

 Formula (19) is obtained by averaging the continuity 
equation. In this case, the values of the vertical velocity on the 
lithosphere are taken equal to zero v3(x1, x2, h) =0.

 �e time scale is chosen from the equality of dimensionless 
tangential stresses in the Lamé and Stokes equations:

                                                                                         (20)
 
 

 �e boundary conditions for creep motion were chosen 
according to the modern velocities of the tectonic plates and 
stresses and the found stresses for interior points of the Lame 
equation. Equations (7) and (14) were solved by iteration. As a 
zero approximation, and u3h=0. In each iteration, the system 
was solved by the BEM. �e integral equations of the method 
have a standard form [30]: 

                                (21)

 Here,            ,               , Si are the boundaries of the 

two-dimensional domain Ωi, rj=xj-ξj, bj are the right-hand sides 
of the equations, and pij

*, wij
* are fundamental solutions. �e 

coe�cient cij(x) expresses the regularity of the boundary curve 
and the choice of the fundamental solution. For a regular curve, 
it is equal to π. In the program, it is calculated automatically 
based on the approximated broken line of the boundary curve 
and is equal to the internal angle of the boundary at point x. For 
the Lamé equations (w=ū), they have the following form (31):

                                                                          (22)

                                                      (23)

<i,j=1,2>.
For the Stokes equations (          ) Ladyzhenskaya [31]:

                                                                                      (24)

 

                                                                                                    (25)

�e averaged stresses in the case of creep �ow are constructed 
by the formula:

                                                                                                   (26)

Here’s

                                                           (27)

                                                                                             (28)

 Integral equations (21) contain both known and unknown 
boundary values. In numerical implementation, the calculated 
integrals with known boundary values of velocities and 
stresses are separated into matrix B, which constitutes the 
right-hand side of the algebraic equation. �e integrals with 
unknown displacements and stresses constitute matrix A. �e 
integrals over S are separated into the sum of integrals Si with 
di�erent physical parameters, taking into account the 
conjugation condition of stresses and velocities. �e 
boundaries Si are divided into linear elements, Ωi into 
triangles, the vertices of which are interior and boundary 
points.

Results
�e search for the solution of the main problem is reduced to 
the solution of a number of direct problems by varying the 
boundary stresses. In the initial stage, the boundary conditions 
were taken as for the plane problem. �e stresses obtained 
from the solution of the previous cycle were on the right side of 
(7-9) in the subsequent cycle. Using the formula (11), the 
corresponding modi�ed relief was constructed as u3 (x1,x2, H). 
Figure 4 shows some variants of the relief obtained in the 
numerical experiment. �e �rst picture built on the 
topological map of Central Asia was adopted for the initial 
stage of the numerical experiment. In each cycle, the boundary 
conditions were varied so as not to spoil the real relief and to 
obtain stresses close to the empirical data Gzovsky [16]. �is 
was the essence of the numerical experiment. 

 Currently, not the entire territory of Central Asia is covered 
by a network of GPS data that serve to monitor the movement of 
the Earth’s crust to analyse and assess the stress state of the 
geological environment and forecast changes in the subsurface 
under the in�uence of natural and anthropogenic factors. 
However, unlike horizontal velocities for which there are �xed 
objects taken as reference points, monitoring vertical velocities 
is di�cult. As a result of solving the Stokes problem, we can 
construct by formulas (16-20) a �eld of vertical displacement 
velocities, which are not instrumentally available everywhere. 
�erefore, the creation of a numerical model of the stress state 
of the Central Asian territory serves as an invaluable 
contribution of mechanics to geodetic surveys.

 One of the seismically active territories of Uzbekistan is the 
Ferghana depression (marked with a triangle in Figure 1), 
bounded by active Talas-Ferghana, 
Aksu-Maydantal-Bogonalin, and Gisar-Kokshal faults, 
containing North Ferghana and South Ferghana deep faults, 

which determine the main tectonic weather in this region. 
Within its limits, there is a fairly large reserve of hydrocarbons. 
During the historical period, strong earthquakes with 
magnitudes of M> 7 occurred here. Its main tectonic feature is 
that, under near-meridian compression, the depression has a 
ri� character, characteristic of extension zones. Such features 
of the geodynamics of the region require further clari�cation. 
For modeling, the territory was divided into somewhat 
conditionally homogeneous blocks, as the boundaries of which 
we took deep faults. As a result of the calculation by formulas 
(16-20, 24-28), the �eld of stresses and velocities of the region 
was constructed. Figure 5 shows the averaged horizontal shear 
stresses at depths of 15 km in this area. �ey mark the most 
vulnerable places where there may be dangerous earthquakes 
in the future. Figure 6 shows the vertical movement velocity 
calculated by formula (19). �ey complement the available 
GPS data and, together with stresses, are valuable tectonic 
material for seismic hazard prediction. 
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 �e formulas (7-11, 21-23) make it possible, on average, to 
estimate changes in the stress state of the Earth’s crust due to 
earthquakes. Using simpli�ed models of the earthquake focus 
mechanism φ=0°, δ=90°, λ =90°, we can estimate how the shear 
stresses of the Earth’s crust in Central Asia approximately 
change during speci�c earthquakes. For the example of a 
recent earthquake that occurred in the territory of Tajikistan 
(38.070N|73.200E shown as a polygon in Figure 1) on 
23.02.2023, 00:37:19 GMT, with a magnitude of M0=6.8 and a 
focal depth of h=21 km, the stresses were calculated (Figure 7). 
In this case, this applies because this earthquake occurred 
along an active fault that is located subparallel. As a variation, 
the stress di�erence obtained by equations (8-9) at zero and 
nonzero values of the moments were taken.

 �us, the proposed methods can be applied to �nd the 
stress-strain state of other regions, taking into account their 
peculiarities.

Conclusions
Based on the continuum equations, a model of the stress state of 
the Central Asian lithosphere has been created. Given the 
peculiarities of geodynamic problems, the three-dimensional 
Lame and Stokes equations are averaged in-depth, taking into 
account the topography of the region. Numerical solutions were 
obtained using the method of boundary integral equations for 
zonally homogeneous bodies. �e stresses obtained by the 
solution of the Lamé problem are used to reconstruct the 
modern movements of the Earth’s crust in the local territory of 
Central Asia using the Stokes equations. Stresses and horizontal 
and vertical displacement velocities serve as additional 
information for monitoring the Earth’s interior of Central Asia.
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�e study of modern tectonic stresses at di�erent scale levels is 
becoming increasingly important in the Earth sciences. �e 
determination of these �elds is very promising for new poses, 
not only purely scienti�c but also for prospecting, prognostic, 
geo-ecological, and other applied problems. Geodynamics uses 
data from geology, geophysics, and other sciences and makes 
extensive use of mathematical and physical modeling. 
Geodynamics studies the nature of the underlying processes 
that arise because of the Earth’s evolution and cause the 
movement of matter within the planet. �e study of the stress 
state of the Earth’s crust and mantle is one of its main tasks [1]. 
Stresses are a peculiar characteristic of the tone of the Earth’s 
crust and mantle, which determines the course of geological and 
geophysical processes. �e study of the stress state of the Earth’s 
crust has not only important scienti�c but also practical 
importance. �e fact that rocks experience great stress has long 
been well-known. Tunnel builders encountered it as early as the 
last century. Knowledge of the stressed state of rock massifs can 
increase the reliability of structures by several times.

 �e study of the stressed state of the Earth’s crust is carried 
out on the basis of the combined use of various methods. �e 
leading role belongs to geological methods of reconstruction of 
stress �elds, which took place in the past during the 
development of typical structural elements of the Earth’s crust. 
Since geological investigations alone are not su�cient to 
determine the distribution of stresses in the Earth’s crust, 

theoretical calculations and modeling of stress �elds are of 
great importance. A possible limitation of the model 
conclusions is connected with the inaccessibility of direct 
experiments at Earth depths for the establishment of real 
values of physical parameters.

 �ere are a su�cient number of publications assessing the 
stress state from earthquake mechanisms and geological data 
[2-5]. An extensive review of stresses worldwide is given in 
[6,7]. Some of this information is based on instrumental data, 
but most of it is derived from seismological data. Such data are 
also available for certain areas of Central Asia [8-13]. 
However, all of them are limited to local reconstruction of the 
geodynamic type of deformation 
(tension-shear-compression) and do not give a quantitative 
characteristic of the stress state of the Central Asian crust as a 
whole. Moreover, such works o�en do not take into account 
the basic provision of mechanics - equations of equilibrium 
and boundary conditions, which is rightly criticized by 
Mukhamediev [14,15].

 Gzovsky analyzed numerous studies by di�erent authors 
on tectonic movements during the last 30 million years and on 
seismicity over 50 years for the territory of the former USSR 
[16]. He estimated approximate values of possible maximal 
tangential stresses at depths of 15-20 km, where the sources of 
strong earthquakes are mostly concentrated. Particularly in 
the territory of Central Asia, they obtained values in the range 

from 0.1 to 1.5 (108 Pa), with the lowest values in the Turan 
plate and Central Kazakhstan shield and the highest values in 
the South Tien-Shan and Hindu-Kush parts of the 
Pamir-Hindukush zone In the Northern Tien Shan, Fergana 
intermountain trough, on the big part of Alay and on the 
territory of Pamir maximum tangential stress is estimated 
0.7-1 (108Pa), on the rest territory 0.4-0.6 (108Pa).

 To determine stresses according to the continuum 
equations, boundary conditions have to be set for equilibrium 
equations. Unfortunately, this is di�cult for geodynamic 
problems. At best, we know the fragmentary stresses extracted 
in wells. For a block of rock in natural occurrence, such 
information is usually absent or extremely unreliable since it 
can be derived only from speculative constructions and 
assumptions. Obtaining quantitative stress data based on a 
mathematical model is the main goal of our work.

 Historically, Central Asia underwent a pre-platform 
regime lasting approximately 330 million years from the 
beginning of the Cambrian to the end of the Permian, then a 
platform regime lasting approximately 220 million years to the 
beginning of the Neogene, and �nally, an orogenic regime 
lasting more than 27 million years. According to the 
predominant opinion of the experts, it is believed that the 
region’s tension is caused by the action on the Turan plate of 
the compressive forces of the Punjab wedge of Hindustan and 
the Arabian plate relative to the Eurasian plate. Extrapolation 
of the modern velocities of relative plate movement on the 
southern boundaries gives estimates of 25-46 km/mln years.

Methods
Analyzing the orientation and magnitudes of stresses in 
di�erent belts of the world, Nikolaev et al. concluded that the 
stress �eld in the lithosphere is the result of modern forces 
rather than residual stresses from past tectonic activity [17]. 
�erefore, we decided to build a model of the stress state of the 
Central Asian lithosphere based on the current picture of the 
deformation of its lithosphere. On the basis of elasticity 
equations, the inverse problem is solved. Atabekov de�ned the 
boundary conditions by means of which the received stresses 
on the territory of Central Asia do not contradict the 
empirical values described above [18]. According to the 
properties of stone in laboratory conditions, the elastic 
modulus of granite is approximately 39-40 MPa, and the end 
shear modulus is approximately 14-34 MPa [19]. From this 
follows the question of whether it is possible to apply the 
methods of the theory of elasticity at such stresses. However, at 
the depths of the Earth’s crust, rock strength increases linearly 
with increasing pressure (Byerlee’s law) [20-23]. �erefore, to 
calculate the stresses of the Earth’s crust, it is quite possible to 
apply the methods of the theory of elasticity. Our study of the 
earthquake energy determined on the basis of seismological 
data within the last 120 years shows that the strongest 
earthquakes in Central Asia with geographical coordinates 
(36°-46°E; 56°-76°N) (Figure 1) occur in the interval of 15-20 
km in the Earth’s crust (Figure 2). �e total energy was 
calculated from the earthquake magnitude using the known 
formulas LgE =10K and K =1.8 M+4 available for the territory 
of Central Asia.

�e stress state of the lithosphere is determined by momentum 
equilibrium equations: 

i,j=1,2,3
where σij and µij are the components of the force and moment 
stress tensor, comma j means di�erentiation by Cartesian 
coordinates xj, F (0,0, ρg) is the mass force, ρ is the density, g is 
the acceleration of gravity, εijk is the Levi – Civita tensor, and Mi 
is the mass moment having the size of the moment divided by 
the volume.

 �e main di�culty in the application of asymmetric theory 
lies in the di�culties encountered in determining the constants 
connecting the generalized stresses with the kinematic 
parameters for obtaining the constitutive relations of materials. 
�ere is a limited number of experiments that allow the 
identi�cation of six elastic Cosserat constants only for the 
simplest materials that are known. Considering this 
uncertainty, the rotation can be roughly expressed as before, 
using the formulas ωk =εijkui,j, and then µij =0 and formula (2) 
expresses the asymmetry of the stress tensor corresponding to 
the moment:

    (3)

 Equations (1-3) are supplemented with boundary 
conditions. �ere are no stresses on the Earth’s surface, and on 
the contact of the lithosphere with the asthenosphere, the 
normal stresses are equal to the weight of the overlying layers, 
and the tangential stresses can be assumed to be frictional 
forces arising from the relative movements of the more mobile 
asthenosphere with the lithosphere:

      (4)

                 (5)

 Here, H=H(x1,x2) is the relief of the Earth’s surface, h=h(x1,x2) 
is the lower boundary of the lithosphere, and ka is the 
coe�cient of friction of the lithosphere with the 
asthenosphere. �e problem was solved relative to the Eurasian 
plate, i.e., the displacements corresponding to the lateral 
boundary of the Eurasian plate were considered zero. �ere are 
no boundary conditions on the other lateral boundaries of the 
selected volume. According to tectonic data, the lithosphere of 
the whole region is divided into several conditionally 
homogeneous blocks, which di�er in physical parameters.

 In the Cartesian coordinate system placed on the Earth’s 
surface, the x1 axis is directed parallel, the x2 axis is directed 
along the meridian, and the x3 axis is directed vertically 
downwards. Geodynamic features of the problem statement, 
together with the geometric dimensions in plane and thickness 
of the lithosphere h, allow simpli�cation of the 
three-dimensional equations (1) by the following formula: 

                                                                                               (6)

 where the dash means averaging over x3. In geodynamics, 
the thickness of the lithosphere h is usually assumed to be 
constant and equal to 100 km (1). �is method reduces the 
solutions of the problem to a two-dimensional one but with the 
possibility of preserving some three-dimensional speci�city of 
the solutions. As a result, the following Lame equation was 
obtained for the averaged elastic displacements u1 and u2:       

                                                                         

      (7) 
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 Here, Ū-two-dimensional vector with components of 
averaged horizontal displacements, Δ - two-dimensional 
Laplace operator, ν - Poisson’s ratio, u3

h, u3
H vertical 

displacements at the base of the asthenosphere and on the 
surface of the earth. �e p parameter appears when applying 
formula (6) to the shear stress on the free surface of the earth 
and expresses the ratio of stresses on the surface and the 
expected average depth. �e derivatives Mi are averaged by 
formula (6).

 In the equations, linear variables are scaled with respect to 
h, and stresses and moments are scaled with respect to the 
average elastic shear modulus G0.

 In the geographical system of coordinates, Mi is expressed 
using the parameters of the failure plane angles of strike ϕ, slope 
λ, dip δ, and moment M0. According to Landau and Lifshitz 
[24], moment M0 is equal:

 M0 =µAU               (12)

 where µ is the rigidity in the source region, and A is the area 
over which the shear dislocation U has been averaged. �e 
moments Mi and M0 are expressed through the parameters of 
the failure plane according to Aki by the following formulas 
[25]:
          М1=-М0(cosδ cosλ sinφ -cos2δ sinλ cosφ),
          М2=-М0(cosδ cosλ cosφ +cos2δ sinλ sinφ),
    М3=М0(sinδ cosλ cos2φ +1/2 sin2δ sinλ sin2φ)    (13)                                                   

 For example, in the special case of a double dipole at the 
location (x10, x20, x30) of the nodal plane by the azimuth φ=0°, 
slope δ=90° and slip angle λ =90°, they are the next:

            M1=M3=0

                                                                                           (14)

 Here, M3 is expressed as an energetic model according to 
Riznichenko [26], where r0 is the relative radius of the reference 
sphere, ne� is the divergence coe�cient, and Δσ is the stress 
relieved.

 �e solution to the problem with incomplete boundary 
conditions is naturally not unique. Additional information is 
required to construct a solution to such problems. For instance, 
in the case of a single equation domain (i=1), the solution can be 
represented as a sum with coe�cients of elasticity problem 
eigenvalues and by selection of coe�cients by the least squares 
method involving some a priori information [27,28]. In some 
cases, the solution to Fredholm equations with respect to the 

boundary values, and then additional information is used. We 
do not question the existence of the set problem and acceptable 
solution constructed based on concrete geodynamic 
conditions. According to the hypothesis described above, the 
stress-strain state of the considered territory is caused by the 
compression of the Eurasian plate on one side and the Indian 
and Arabian plates on the other side. It would be naive to look 
for the solution of a heavy elastic prism resting on a �xed base, 
which receives the vertical displacements corresponding to the 
real relief of the earth under the action of lateral compressions. 
At least in the formulation of small deformations, this is 
nonsense because the height of the real terrain reaches 6-7 km. 
�erefore, by numerical experiment, Atabekov [18] decided to 
construct the boundary conditions in such a way that the 
obtained solution under these boundary conditions 
approximately coincided with the established empirical values 
in Gzovsky [16]. At the beginning of the experiment, the 
average σij in the right part of formulas [17,18] was used to 
solve the plane problem, the boundary conditions for which 
were selected preliminarily according to hypothetical data 
about the velocities of the Indian and Arabian plates relative to 
the Eurasian plate. Namely, the stress relations created by the 
Indian and Arabian plates at the southern corners of the Turan 
plate were taken equal to their velocity relations with uniform 
interpolation. Each stress on the right and le� sides of the 
rectangle, which limits our region in plan, was interpolated to 
the upper boundary of the Eurasian plate, which is assumed 
stationary. Figure 3 shows the corresponding boundary 
conditions for this problem and the obtained stress intensity 
isolines σi, determined by the formula: 

               (15)

 

 �e reconstructed stresses of an elastic problem are used 
as initial data for other problems. For example, to solve the 
problem of the modern movements of the Earth’s crust in 
territories of Central Asia by Stokes equations Atabekov [29]. 
�e tectonic �ow of mountain masses occurring in a relatively 
short time can provide important information. One of the 
important parameters in seismic zoning is the displacement 
rate gradient. In contrast to the tectonic stresses, which change 
weakly, the seismotectonic �ow of rock masses occurring in a 

relatively short time can provide important information for 
tectonic zoning. We apply to the Stokes equations similar 
procedures described above for the elastic problem. By relating 
the averaged displacement velocities h/t0, and stresses to μ0/t0 
(µ0-the average viscosity of the constituent regions, t0-the time 
scale), we obtain the following dimensionless Stokes equations:

Figure 4. Different variants of the relief obtained during the numerical 
experiment. The first picture is a modern relief constructed according 
to a topographic map; the last picture is constructed according to the 
solution of the final cycle of the numerical experiment. On the 
horizontal - east longitude and north latitude in degrees.
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 Formula (19) is obtained by averaging the continuity 
equation. In this case, the values of the vertical velocity on the 
lithosphere are taken equal to zero v3(x1, x2, h) =0.

 �e time scale is chosen from the equality of dimensionless 
tangential stresses in the Lamé and Stokes equations:

                                                                                         (20)
 
 

 �e boundary conditions for creep motion were chosen 
according to the modern velocities of the tectonic plates and 
stresses and the found stresses for interior points of the Lame 
equation. Equations (7) and (14) were solved by iteration. As a 
zero approximation, and u3h=0. In each iteration, the system 
was solved by the BEM. �e integral equations of the method 
have a standard form [30]: 

                                (21)

 Here,            ,               , Si are the boundaries of the 

two-dimensional domain Ωi, rj=xj-ξj, bj are the right-hand sides 
of the equations, and pij

*, wij
* are fundamental solutions. �e 

coe�cient cij(x) expresses the regularity of the boundary curve 
and the choice of the fundamental solution. For a regular curve, 
it is equal to π. In the program, it is calculated automatically 
based on the approximated broken line of the boundary curve 
and is equal to the internal angle of the boundary at point x. For 
the Lamé equations (w=ū), they have the following form (31):

                                                                          (22)

                                                      (23)

<i,j=1,2>.
For the Stokes equations (          ) Ladyzhenskaya [31]:

                                                                                      (24)

 

                                                                                                    (25)

�e averaged stresses in the case of creep �ow are constructed 
by the formula:

                                                                                                   (26)

Here’s

                                                           (27)

                                                                                             (28)

 Integral equations (21) contain both known and unknown 
boundary values. In numerical implementation, the calculated 
integrals with known boundary values of velocities and 
stresses are separated into matrix B, which constitutes the 
right-hand side of the algebraic equation. �e integrals with 
unknown displacements and stresses constitute matrix A. �e 
integrals over S are separated into the sum of integrals Si with 
di�erent physical parameters, taking into account the 
conjugation condition of stresses and velocities. �e 
boundaries Si are divided into linear elements, Ωi into 
triangles, the vertices of which are interior and boundary 
points.

Results
�e search for the solution of the main problem is reduced to 
the solution of a number of direct problems by varying the 
boundary stresses. In the initial stage, the boundary conditions 
were taken as for the plane problem. �e stresses obtained 
from the solution of the previous cycle were on the right side of 
(7-9) in the subsequent cycle. Using the formula (11), the 
corresponding modi�ed relief was constructed as u3 (x1,x2, H). 
Figure 4 shows some variants of the relief obtained in the 
numerical experiment. �e �rst picture built on the 
topological map of Central Asia was adopted for the initial 
stage of the numerical experiment. In each cycle, the boundary 
conditions were varied so as not to spoil the real relief and to 
obtain stresses close to the empirical data Gzovsky [16]. �is 
was the essence of the numerical experiment. 

 Currently, not the entire territory of Central Asia is covered 
by a network of GPS data that serve to monitor the movement of 
the Earth’s crust to analyse and assess the stress state of the 
geological environment and forecast changes in the subsurface 
under the in�uence of natural and anthropogenic factors. 
However, unlike horizontal velocities for which there are �xed 
objects taken as reference points, monitoring vertical velocities 
is di�cult. As a result of solving the Stokes problem, we can 
construct by formulas (16-20) a �eld of vertical displacement 
velocities, which are not instrumentally available everywhere. 
�erefore, the creation of a numerical model of the stress state 
of the Central Asian territory serves as an invaluable 
contribution of mechanics to geodetic surveys.

 One of the seismically active territories of Uzbekistan is the 
Ferghana depression (marked with a triangle in Figure 1), 
bounded by active Talas-Ferghana, 
Aksu-Maydantal-Bogonalin, and Gisar-Kokshal faults, 
containing North Ferghana and South Ferghana deep faults, 

which determine the main tectonic weather in this region. 
Within its limits, there is a fairly large reserve of hydrocarbons. 
During the historical period, strong earthquakes with 
magnitudes of M> 7 occurred here. Its main tectonic feature is 
that, under near-meridian compression, the depression has a 
ri� character, characteristic of extension zones. Such features 
of the geodynamics of the region require further clari�cation. 
For modeling, the territory was divided into somewhat 
conditionally homogeneous blocks, as the boundaries of which 
we took deep faults. As a result of the calculation by formulas 
(16-20, 24-28), the �eld of stresses and velocities of the region 
was constructed. Figure 5 shows the averaged horizontal shear 
stresses at depths of 15 km in this area. �ey mark the most 
vulnerable places where there may be dangerous earthquakes 
in the future. Figure 6 shows the vertical movement velocity 
calculated by formula (19). �ey complement the available 
GPS data and, together with stresses, are valuable tectonic 
material for seismic hazard prediction. 
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 �e formulas (7-11, 21-23) make it possible, on average, to 
estimate changes in the stress state of the Earth’s crust due to 
earthquakes. Using simpli�ed models of the earthquake focus 
mechanism φ=0°, δ=90°, λ =90°, we can estimate how the shear 
stresses of the Earth’s crust in Central Asia approximately 
change during speci�c earthquakes. For the example of a 
recent earthquake that occurred in the territory of Tajikistan 
(38.070N|73.200E shown as a polygon in Figure 1) on 
23.02.2023, 00:37:19 GMT, with a magnitude of M0=6.8 and a 
focal depth of h=21 km, the stresses were calculated (Figure 7). 
In this case, this applies because this earthquake occurred 
along an active fault that is located subparallel. As a variation, 
the stress di�erence obtained by equations (8-9) at zero and 
nonzero values of the moments were taken.

 �us, the proposed methods can be applied to �nd the 
stress-strain state of other regions, taking into account their 
peculiarities.

Conclusions
Based on the continuum equations, a model of the stress state of 
the Central Asian lithosphere has been created. Given the 
peculiarities of geodynamic problems, the three-dimensional 
Lame and Stokes equations are averaged in-depth, taking into 
account the topography of the region. Numerical solutions were 
obtained using the method of boundary integral equations for 
zonally homogeneous bodies. �e stresses obtained by the 
solution of the Lamé problem are used to reconstruct the 
modern movements of the Earth’s crust in the local territory of 
Central Asia using the Stokes equations. Stresses and horizontal 
and vertical displacement velocities serve as additional 
information for monitoring the Earth’s interior of Central Asia.
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�e study of modern tectonic stresses at di�erent scale levels is 
becoming increasingly important in the Earth sciences. �e 
determination of these �elds is very promising for new poses, 
not only purely scienti�c but also for prospecting, prognostic, 
geo-ecological, and other applied problems. Geodynamics uses 
data from geology, geophysics, and other sciences and makes 
extensive use of mathematical and physical modeling. 
Geodynamics studies the nature of the underlying processes 
that arise because of the Earth’s evolution and cause the 
movement of matter within the planet. �e study of the stress 
state of the Earth’s crust and mantle is one of its main tasks [1]. 
Stresses are a peculiar characteristic of the tone of the Earth’s 
crust and mantle, which determines the course of geological and 
geophysical processes. �e study of the stress state of the Earth’s 
crust has not only important scienti�c but also practical 
importance. �e fact that rocks experience great stress has long 
been well-known. Tunnel builders encountered it as early as the 
last century. Knowledge of the stressed state of rock massifs can 
increase the reliability of structures by several times.

 �e study of the stressed state of the Earth’s crust is carried 
out on the basis of the combined use of various methods. �e 
leading role belongs to geological methods of reconstruction of 
stress �elds, which took place in the past during the 
development of typical structural elements of the Earth’s crust. 
Since geological investigations alone are not su�cient to 
determine the distribution of stresses in the Earth’s crust, 

theoretical calculations and modeling of stress �elds are of 
great importance. A possible limitation of the model 
conclusions is connected with the inaccessibility of direct 
experiments at Earth depths for the establishment of real 
values of physical parameters.

 �ere are a su�cient number of publications assessing the 
stress state from earthquake mechanisms and geological data 
[2-5]. An extensive review of stresses worldwide is given in 
[6,7]. Some of this information is based on instrumental data, 
but most of it is derived from seismological data. Such data are 
also available for certain areas of Central Asia [8-13]. 
However, all of them are limited to local reconstruction of the 
geodynamic type of deformation 
(tension-shear-compression) and do not give a quantitative 
characteristic of the stress state of the Central Asian crust as a 
whole. Moreover, such works o�en do not take into account 
the basic provision of mechanics - equations of equilibrium 
and boundary conditions, which is rightly criticized by 
Mukhamediev [14,15].

 Gzovsky analyzed numerous studies by di�erent authors 
on tectonic movements during the last 30 million years and on 
seismicity over 50 years for the territory of the former USSR 
[16]. He estimated approximate values of possible maximal 
tangential stresses at depths of 15-20 km, where the sources of 
strong earthquakes are mostly concentrated. Particularly in 
the territory of Central Asia, they obtained values in the range 

from 0.1 to 1.5 (108 Pa), with the lowest values in the Turan 
plate and Central Kazakhstan shield and the highest values in 
the South Tien-Shan and Hindu-Kush parts of the 
Pamir-Hindukush zone In the Northern Tien Shan, Fergana 
intermountain trough, on the big part of Alay and on the 
territory of Pamir maximum tangential stress is estimated 
0.7-1 (108Pa), on the rest territory 0.4-0.6 (108Pa).

 To determine stresses according to the continuum 
equations, boundary conditions have to be set for equilibrium 
equations. Unfortunately, this is di�cult for geodynamic 
problems. At best, we know the fragmentary stresses extracted 
in wells. For a block of rock in natural occurrence, such 
information is usually absent or extremely unreliable since it 
can be derived only from speculative constructions and 
assumptions. Obtaining quantitative stress data based on a 
mathematical model is the main goal of our work.

 Historically, Central Asia underwent a pre-platform 
regime lasting approximately 330 million years from the 
beginning of the Cambrian to the end of the Permian, then a 
platform regime lasting approximately 220 million years to the 
beginning of the Neogene, and �nally, an orogenic regime 
lasting more than 27 million years. According to the 
predominant opinion of the experts, it is believed that the 
region’s tension is caused by the action on the Turan plate of 
the compressive forces of the Punjab wedge of Hindustan and 
the Arabian plate relative to the Eurasian plate. Extrapolation 
of the modern velocities of relative plate movement on the 
southern boundaries gives estimates of 25-46 km/mln years.

Methods
Analyzing the orientation and magnitudes of stresses in 
di�erent belts of the world, Nikolaev et al. concluded that the 
stress �eld in the lithosphere is the result of modern forces 
rather than residual stresses from past tectonic activity [17]. 
�erefore, we decided to build a model of the stress state of the 
Central Asian lithosphere based on the current picture of the 
deformation of its lithosphere. On the basis of elasticity 
equations, the inverse problem is solved. Atabekov de�ned the 
boundary conditions by means of which the received stresses 
on the territory of Central Asia do not contradict the 
empirical values described above [18]. According to the 
properties of stone in laboratory conditions, the elastic 
modulus of granite is approximately 39-40 MPa, and the end 
shear modulus is approximately 14-34 MPa [19]. From this 
follows the question of whether it is possible to apply the 
methods of the theory of elasticity at such stresses. However, at 
the depths of the Earth’s crust, rock strength increases linearly 
with increasing pressure (Byerlee’s law) [20-23]. �erefore, to 
calculate the stresses of the Earth’s crust, it is quite possible to 
apply the methods of the theory of elasticity. Our study of the 
earthquake energy determined on the basis of seismological 
data within the last 120 years shows that the strongest 
earthquakes in Central Asia with geographical coordinates 
(36°-46°E; 56°-76°N) (Figure 1) occur in the interval of 15-20 
km in the Earth’s crust (Figure 2). �e total energy was 
calculated from the earthquake magnitude using the known 
formulas LgE =10K and K =1.8 M+4 available for the territory 
of Central Asia.

�e stress state of the lithosphere is determined by momentum 
equilibrium equations: 

i,j=1,2,3
where σij and µij are the components of the force and moment 
stress tensor, comma j means di�erentiation by Cartesian 
coordinates xj, F (0,0, ρg) is the mass force, ρ is the density, g is 
the acceleration of gravity, εijk is the Levi – Civita tensor, and Mi 
is the mass moment having the size of the moment divided by 
the volume.

 �e main di�culty in the application of asymmetric theory 
lies in the di�culties encountered in determining the constants 
connecting the generalized stresses with the kinematic 
parameters for obtaining the constitutive relations of materials. 
�ere is a limited number of experiments that allow the 
identi�cation of six elastic Cosserat constants only for the 
simplest materials that are known. Considering this 
uncertainty, the rotation can be roughly expressed as before, 
using the formulas ωk =εijkui,j, and then µij =0 and formula (2) 
expresses the asymmetry of the stress tensor corresponding to 
the moment:

    (3)

 Equations (1-3) are supplemented with boundary 
conditions. �ere are no stresses on the Earth’s surface, and on 
the contact of the lithosphere with the asthenosphere, the 
normal stresses are equal to the weight of the overlying layers, 
and the tangential stresses can be assumed to be frictional 
forces arising from the relative movements of the more mobile 
asthenosphere with the lithosphere:

      (4)

                 (5)

 Here, H=H(x1,x2) is the relief of the Earth’s surface, h=h(x1,x2) 
is the lower boundary of the lithosphere, and ka is the 
coe�cient of friction of the lithosphere with the 
asthenosphere. �e problem was solved relative to the Eurasian 
plate, i.e., the displacements corresponding to the lateral 
boundary of the Eurasian plate were considered zero. �ere are 
no boundary conditions on the other lateral boundaries of the 
selected volume. According to tectonic data, the lithosphere of 
the whole region is divided into several conditionally 
homogeneous blocks, which di�er in physical parameters.

 In the Cartesian coordinate system placed on the Earth’s 
surface, the x1 axis is directed parallel, the x2 axis is directed 
along the meridian, and the x3 axis is directed vertically 
downwards. Geodynamic features of the problem statement, 
together with the geometric dimensions in plane and thickness 
of the lithosphere h, allow simpli�cation of the 
three-dimensional equations (1) by the following formula: 

                                                                                               (6)

 where the dash means averaging over x3. In geodynamics, 
the thickness of the lithosphere h is usually assumed to be 
constant and equal to 100 km (1). �is method reduces the 
solutions of the problem to a two-dimensional one but with the 
possibility of preserving some three-dimensional speci�city of 
the solutions. As a result, the following Lame equation was 
obtained for the averaged elastic displacements u1 and u2:       

                                                                         

      (7) 

                       

                       (8)

                                

                       

                       

       (9)

                         

        

                     (10)

                    

                     (11)
 

 Here, Ū-two-dimensional vector with components of 
averaged horizontal displacements, Δ - two-dimensional 
Laplace operator, ν - Poisson’s ratio, u3

h, u3
H vertical 

displacements at the base of the asthenosphere and on the 
surface of the earth. �e p parameter appears when applying 
formula (6) to the shear stress on the free surface of the earth 
and expresses the ratio of stresses on the surface and the 
expected average depth. �e derivatives Mi are averaged by 
formula (6).

 In the equations, linear variables are scaled with respect to 
h, and stresses and moments are scaled with respect to the 
average elastic shear modulus G0.

 In the geographical system of coordinates, Mi is expressed 
using the parameters of the failure plane angles of strike ϕ, slope 
λ, dip δ, and moment M0. According to Landau and Lifshitz 
[24], moment M0 is equal:

 M0 =µAU               (12)

 where µ is the rigidity in the source region, and A is the area 
over which the shear dislocation U has been averaged. �e 
moments Mi and M0 are expressed through the parameters of 
the failure plane according to Aki by the following formulas 
[25]:
          М1=-М0(cosδ cosλ sinφ -cos2δ sinλ cosφ),
          М2=-М0(cosδ cosλ cosφ +cos2δ sinλ sinφ),
    М3=М0(sinδ cosλ cos2φ +1/2 sin2δ sinλ sin2φ)    (13)                                                   

 For example, in the special case of a double dipole at the 
location (x10, x20, x30) of the nodal plane by the azimuth φ=0°, 
slope δ=90° and slip angle λ =90°, they are the next:

            M1=M3=0

                                                                                           (14)

 Here, M3 is expressed as an energetic model according to 
Riznichenko [26], where r0 is the relative radius of the reference 
sphere, ne� is the divergence coe�cient, and Δσ is the stress 
relieved.

 �e solution to the problem with incomplete boundary 
conditions is naturally not unique. Additional information is 
required to construct a solution to such problems. For instance, 
in the case of a single equation domain (i=1), the solution can be 
represented as a sum with coe�cients of elasticity problem 
eigenvalues and by selection of coe�cients by the least squares 
method involving some a priori information [27,28]. In some 
cases, the solution to Fredholm equations with respect to the 

boundary values, and then additional information is used. We 
do not question the existence of the set problem and acceptable 
solution constructed based on concrete geodynamic 
conditions. According to the hypothesis described above, the 
stress-strain state of the considered territory is caused by the 
compression of the Eurasian plate on one side and the Indian 
and Arabian plates on the other side. It would be naive to look 
for the solution of a heavy elastic prism resting on a �xed base, 
which receives the vertical displacements corresponding to the 
real relief of the earth under the action of lateral compressions. 
At least in the formulation of small deformations, this is 
nonsense because the height of the real terrain reaches 6-7 km. 
�erefore, by numerical experiment, Atabekov [18] decided to 
construct the boundary conditions in such a way that the 
obtained solution under these boundary conditions 
approximately coincided with the established empirical values 
in Gzovsky [16]. At the beginning of the experiment, the 
average σij in the right part of formulas [17,18] was used to 
solve the plane problem, the boundary conditions for which 
were selected preliminarily according to hypothetical data 
about the velocities of the Indian and Arabian plates relative to 
the Eurasian plate. Namely, the stress relations created by the 
Indian and Arabian plates at the southern corners of the Turan 
plate were taken equal to their velocity relations with uniform 
interpolation. Each stress on the right and le� sides of the 
rectangle, which limits our region in plan, was interpolated to 
the upper boundary of the Eurasian plate, which is assumed 
stationary. Figure 3 shows the corresponding boundary 
conditions for this problem and the obtained stress intensity 
isolines σi, determined by the formula: 

               (15)

 

 �e reconstructed stresses of an elastic problem are used 
as initial data for other problems. For example, to solve the 
problem of the modern movements of the Earth’s crust in 
territories of Central Asia by Stokes equations Atabekov [29]. 
�e tectonic �ow of mountain masses occurring in a relatively 
short time can provide important information. One of the 
important parameters in seismic zoning is the displacement 
rate gradient. In contrast to the tectonic stresses, which change 
weakly, the seismotectonic �ow of rock masses occurring in a 

relatively short time can provide important information for 
tectonic zoning. We apply to the Stokes equations similar 
procedures described above for the elastic problem. By relating 
the averaged displacement velocities h/t0, and stresses to μ0/t0 
(µ0-the average viscosity of the constituent regions, t0-the time 
scale), we obtain the following dimensionless Stokes equations:

Figure 5. Shear stresses (108 Pa) in the Earth’s crust of the Feghana Depression at the level of 15-16 km. On vertical North latitude, on horizontal 
East longitude in degrees.

Figure 6. The velocity of vertical displacement (cm/year) in the territory 
of the Ferghana Depression. East longitude and north latitude in degrees.

 Formula (19) is obtained by averaging the continuity 
equation. In this case, the values of the vertical velocity on the 
lithosphere are taken equal to zero v3(x1, x2, h) =0.

 �e time scale is chosen from the equality of dimensionless 
tangential stresses in the Lamé and Stokes equations:

                                                                                         (20)
 
 

 �e boundary conditions for creep motion were chosen 
according to the modern velocities of the tectonic plates and 
stresses and the found stresses for interior points of the Lame 
equation. Equations (7) and (14) were solved by iteration. As a 
zero approximation, and u3h=0. In each iteration, the system 
was solved by the BEM. �e integral equations of the method 
have a standard form [30]: 

                                (21)

 Here,            ,               , Si are the boundaries of the 

two-dimensional domain Ωi, rj=xj-ξj, bj are the right-hand sides 
of the equations, and pij

*, wij
* are fundamental solutions. �e 

coe�cient cij(x) expresses the regularity of the boundary curve 
and the choice of the fundamental solution. For a regular curve, 
it is equal to π. In the program, it is calculated automatically 
based on the approximated broken line of the boundary curve 
and is equal to the internal angle of the boundary at point x. For 
the Lamé equations (w=ū), they have the following form (31):

                                                                          (22)

                                                      (23)

<i,j=1,2>.
For the Stokes equations (          ) Ladyzhenskaya [31]:

                                                                                      (24)

 

                                                                                                    (25)

�e averaged stresses in the case of creep �ow are constructed 
by the formula:

                                                                                                   (26)

Here’s

                                                           (27)

                                                                                             (28)

 Integral equations (21) contain both known and unknown 
boundary values. In numerical implementation, the calculated 
integrals with known boundary values of velocities and 
stresses are separated into matrix B, which constitutes the 
right-hand side of the algebraic equation. �e integrals with 
unknown displacements and stresses constitute matrix A. �e 
integrals over S are separated into the sum of integrals Si with 
di�erent physical parameters, taking into account the 
conjugation condition of stresses and velocities. �e 
boundaries Si are divided into linear elements, Ωi into 
triangles, the vertices of which are interior and boundary 
points.

Results
�e search for the solution of the main problem is reduced to 
the solution of a number of direct problems by varying the 
boundary stresses. In the initial stage, the boundary conditions 
were taken as for the plane problem. �e stresses obtained 
from the solution of the previous cycle were on the right side of 
(7-9) in the subsequent cycle. Using the formula (11), the 
corresponding modi�ed relief was constructed as u3 (x1,x2, H). 
Figure 4 shows some variants of the relief obtained in the 
numerical experiment. �e �rst picture built on the 
topological map of Central Asia was adopted for the initial 
stage of the numerical experiment. In each cycle, the boundary 
conditions were varied so as not to spoil the real relief and to 
obtain stresses close to the empirical data Gzovsky [16]. �is 
was the essence of the numerical experiment. 

 Currently, not the entire territory of Central Asia is covered 
by a network of GPS data that serve to monitor the movement of 
the Earth’s crust to analyse and assess the stress state of the 
geological environment and forecast changes in the subsurface 
under the in�uence of natural and anthropogenic factors. 
However, unlike horizontal velocities for which there are �xed 
objects taken as reference points, monitoring vertical velocities 
is di�cult. As a result of solving the Stokes problem, we can 
construct by formulas (16-20) a �eld of vertical displacement 
velocities, which are not instrumentally available everywhere. 
�erefore, the creation of a numerical model of the stress state 
of the Central Asian territory serves as an invaluable 
contribution of mechanics to geodetic surveys.

 One of the seismically active territories of Uzbekistan is the 
Ferghana depression (marked with a triangle in Figure 1), 
bounded by active Talas-Ferghana, 
Aksu-Maydantal-Bogonalin, and Gisar-Kokshal faults, 
containing North Ferghana and South Ferghana deep faults, 

which determine the main tectonic weather in this region. 
Within its limits, there is a fairly large reserve of hydrocarbons. 
During the historical period, strong earthquakes with 
magnitudes of M> 7 occurred here. Its main tectonic feature is 
that, under near-meridian compression, the depression has a 
ri� character, characteristic of extension zones. Such features 
of the geodynamics of the region require further clari�cation. 
For modeling, the territory was divided into somewhat 
conditionally homogeneous blocks, as the boundaries of which 
we took deep faults. As a result of the calculation by formulas 
(16-20, 24-28), the �eld of stresses and velocities of the region 
was constructed. Figure 5 shows the averaged horizontal shear 
stresses at depths of 15 km in this area. �ey mark the most 
vulnerable places where there may be dangerous earthquakes 
in the future. Figure 6 shows the vertical movement velocity 
calculated by formula (19). �ey complement the available 
GPS data and, together with stresses, are valuable tectonic 
material for seismic hazard prediction. 
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 �e formulas (7-11, 21-23) make it possible, on average, to 
estimate changes in the stress state of the Earth’s crust due to 
earthquakes. Using simpli�ed models of the earthquake focus 
mechanism φ=0°, δ=90°, λ =90°, we can estimate how the shear 
stresses of the Earth’s crust in Central Asia approximately 
change during speci�c earthquakes. For the example of a 
recent earthquake that occurred in the territory of Tajikistan 
(38.070N|73.200E shown as a polygon in Figure 1) on 
23.02.2023, 00:37:19 GMT, with a magnitude of M0=6.8 and a 
focal depth of h=21 km, the stresses were calculated (Figure 7). 
In this case, this applies because this earthquake occurred 
along an active fault that is located subparallel. As a variation, 
the stress di�erence obtained by equations (8-9) at zero and 
nonzero values of the moments were taken.

 �us, the proposed methods can be applied to �nd the 
stress-strain state of other regions, taking into account their 
peculiarities.

Conclusions
Based on the continuum equations, a model of the stress state of 
the Central Asian lithosphere has been created. Given the 
peculiarities of geodynamic problems, the three-dimensional 
Lame and Stokes equations are averaged in-depth, taking into 
account the topography of the region. Numerical solutions were 
obtained using the method of boundary integral equations for 
zonally homogeneous bodies. �e stresses obtained by the 
solution of the Lamé problem are used to reconstruct the 
modern movements of the Earth’s crust in the local territory of 
Central Asia using the Stokes equations. Stresses and horizontal 
and vertical displacement velocities serve as additional 
information for monitoring the Earth’s interior of Central Asia.
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�e study of modern tectonic stresses at di�erent scale levels is 
becoming increasingly important in the Earth sciences. �e 
determination of these �elds is very promising for new poses, 
not only purely scienti�c but also for prospecting, prognostic, 
geo-ecological, and other applied problems. Geodynamics uses 
data from geology, geophysics, and other sciences and makes 
extensive use of mathematical and physical modeling. 
Geodynamics studies the nature of the underlying processes 
that arise because of the Earth’s evolution and cause the 
movement of matter within the planet. �e study of the stress 
state of the Earth’s crust and mantle is one of its main tasks [1]. 
Stresses are a peculiar characteristic of the tone of the Earth’s 
crust and mantle, which determines the course of geological and 
geophysical processes. �e study of the stress state of the Earth’s 
crust has not only important scienti�c but also practical 
importance. �e fact that rocks experience great stress has long 
been well-known. Tunnel builders encountered it as early as the 
last century. Knowledge of the stressed state of rock massifs can 
increase the reliability of structures by several times.

 �e study of the stressed state of the Earth’s crust is carried 
out on the basis of the combined use of various methods. �e 
leading role belongs to geological methods of reconstruction of 
stress �elds, which took place in the past during the 
development of typical structural elements of the Earth’s crust. 
Since geological investigations alone are not su�cient to 
determine the distribution of stresses in the Earth’s crust, 

theoretical calculations and modeling of stress �elds are of 
great importance. A possible limitation of the model 
conclusions is connected with the inaccessibility of direct 
experiments at Earth depths for the establishment of real 
values of physical parameters.

 �ere are a su�cient number of publications assessing the 
stress state from earthquake mechanisms and geological data 
[2-5]. An extensive review of stresses worldwide is given in 
[6,7]. Some of this information is based on instrumental data, 
but most of it is derived from seismological data. Such data are 
also available for certain areas of Central Asia [8-13]. 
However, all of them are limited to local reconstruction of the 
geodynamic type of deformation 
(tension-shear-compression) and do not give a quantitative 
characteristic of the stress state of the Central Asian crust as a 
whole. Moreover, such works o�en do not take into account 
the basic provision of mechanics - equations of equilibrium 
and boundary conditions, which is rightly criticized by 
Mukhamediev [14,15].

 Gzovsky analyzed numerous studies by di�erent authors 
on tectonic movements during the last 30 million years and on 
seismicity over 50 years for the territory of the former USSR 
[16]. He estimated approximate values of possible maximal 
tangential stresses at depths of 15-20 km, where the sources of 
strong earthquakes are mostly concentrated. Particularly in 
the territory of Central Asia, they obtained values in the range 

from 0.1 to 1.5 (108 Pa), with the lowest values in the Turan 
plate and Central Kazakhstan shield and the highest values in 
the South Tien-Shan and Hindu-Kush parts of the 
Pamir-Hindukush zone In the Northern Tien Shan, Fergana 
intermountain trough, on the big part of Alay and on the 
territory of Pamir maximum tangential stress is estimated 
0.7-1 (108Pa), on the rest territory 0.4-0.6 (108Pa).

 To determine stresses according to the continuum 
equations, boundary conditions have to be set for equilibrium 
equations. Unfortunately, this is di�cult for geodynamic 
problems. At best, we know the fragmentary stresses extracted 
in wells. For a block of rock in natural occurrence, such 
information is usually absent or extremely unreliable since it 
can be derived only from speculative constructions and 
assumptions. Obtaining quantitative stress data based on a 
mathematical model is the main goal of our work.

 Historically, Central Asia underwent a pre-platform 
regime lasting approximately 330 million years from the 
beginning of the Cambrian to the end of the Permian, then a 
platform regime lasting approximately 220 million years to the 
beginning of the Neogene, and �nally, an orogenic regime 
lasting more than 27 million years. According to the 
predominant opinion of the experts, it is believed that the 
region’s tension is caused by the action on the Turan plate of 
the compressive forces of the Punjab wedge of Hindustan and 
the Arabian plate relative to the Eurasian plate. Extrapolation 
of the modern velocities of relative plate movement on the 
southern boundaries gives estimates of 25-46 km/mln years.

Methods
Analyzing the orientation and magnitudes of stresses in 
di�erent belts of the world, Nikolaev et al. concluded that the 
stress �eld in the lithosphere is the result of modern forces 
rather than residual stresses from past tectonic activity [17]. 
�erefore, we decided to build a model of the stress state of the 
Central Asian lithosphere based on the current picture of the 
deformation of its lithosphere. On the basis of elasticity 
equations, the inverse problem is solved. Atabekov de�ned the 
boundary conditions by means of which the received stresses 
on the territory of Central Asia do not contradict the 
empirical values described above [18]. According to the 
properties of stone in laboratory conditions, the elastic 
modulus of granite is approximately 39-40 MPa, and the end 
shear modulus is approximately 14-34 MPa [19]. From this 
follows the question of whether it is possible to apply the 
methods of the theory of elasticity at such stresses. However, at 
the depths of the Earth’s crust, rock strength increases linearly 
with increasing pressure (Byerlee’s law) [20-23]. �erefore, to 
calculate the stresses of the Earth’s crust, it is quite possible to 
apply the methods of the theory of elasticity. Our study of the 
earthquake energy determined on the basis of seismological 
data within the last 120 years shows that the strongest 
earthquakes in Central Asia with geographical coordinates 
(36°-46°E; 56°-76°N) (Figure 1) occur in the interval of 15-20 
km in the Earth’s crust (Figure 2). �e total energy was 
calculated from the earthquake magnitude using the known 
formulas LgE =10K and K =1.8 M+4 available for the territory 
of Central Asia.

�e stress state of the lithosphere is determined by momentum 
equilibrium equations: 

i,j=1,2,3
where σij and µij are the components of the force and moment 
stress tensor, comma j means di�erentiation by Cartesian 
coordinates xj, F (0,0, ρg) is the mass force, ρ is the density, g is 
the acceleration of gravity, εijk is the Levi – Civita tensor, and Mi 
is the mass moment having the size of the moment divided by 
the volume.

 �e main di�culty in the application of asymmetric theory 
lies in the di�culties encountered in determining the constants 
connecting the generalized stresses with the kinematic 
parameters for obtaining the constitutive relations of materials. 
�ere is a limited number of experiments that allow the 
identi�cation of six elastic Cosserat constants only for the 
simplest materials that are known. Considering this 
uncertainty, the rotation can be roughly expressed as before, 
using the formulas ωk =εijkui,j, and then µij =0 and formula (2) 
expresses the asymmetry of the stress tensor corresponding to 
the moment:

    (3)

 Equations (1-3) are supplemented with boundary 
conditions. �ere are no stresses on the Earth’s surface, and on 
the contact of the lithosphere with the asthenosphere, the 
normal stresses are equal to the weight of the overlying layers, 
and the tangential stresses can be assumed to be frictional 
forces arising from the relative movements of the more mobile 
asthenosphere with the lithosphere:

      (4)

                 (5)

 Here, H=H(x1,x2) is the relief of the Earth’s surface, h=h(x1,x2) 
is the lower boundary of the lithosphere, and ka is the 
coe�cient of friction of the lithosphere with the 
asthenosphere. �e problem was solved relative to the Eurasian 
plate, i.e., the displacements corresponding to the lateral 
boundary of the Eurasian plate were considered zero. �ere are 
no boundary conditions on the other lateral boundaries of the 
selected volume. According to tectonic data, the lithosphere of 
the whole region is divided into several conditionally 
homogeneous blocks, which di�er in physical parameters.

 In the Cartesian coordinate system placed on the Earth’s 
surface, the x1 axis is directed parallel, the x2 axis is directed 
along the meridian, and the x3 axis is directed vertically 
downwards. Geodynamic features of the problem statement, 
together with the geometric dimensions in plane and thickness 
of the lithosphere h, allow simpli�cation of the 
three-dimensional equations (1) by the following formula: 

                                                                                               (6)

 where the dash means averaging over x3. In geodynamics, 
the thickness of the lithosphere h is usually assumed to be 
constant and equal to 100 km (1). �is method reduces the 
solutions of the problem to a two-dimensional one but with the 
possibility of preserving some three-dimensional speci�city of 
the solutions. As a result, the following Lame equation was 
obtained for the averaged elastic displacements u1 and u2:       

                                                                         

      (7) 

                       

                       (8)

                                

                       

                       

       (9)

                         

        

                     (10)

                    

                     (11)
 

 Here, Ū-two-dimensional vector with components of 
averaged horizontal displacements, Δ - two-dimensional 
Laplace operator, ν - Poisson’s ratio, u3

h, u3
H vertical 

displacements at the base of the asthenosphere and on the 
surface of the earth. �e p parameter appears when applying 
formula (6) to the shear stress on the free surface of the earth 
and expresses the ratio of stresses on the surface and the 
expected average depth. �e derivatives Mi are averaged by 
formula (6).

 In the equations, linear variables are scaled with respect to 
h, and stresses and moments are scaled with respect to the 
average elastic shear modulus G0.

 In the geographical system of coordinates, Mi is expressed 
using the parameters of the failure plane angles of strike ϕ, slope 
λ, dip δ, and moment M0. According to Landau and Lifshitz 
[24], moment M0 is equal:

 M0 =µAU               (12)

 where µ is the rigidity in the source region, and A is the area 
over which the shear dislocation U has been averaged. �e 
moments Mi and M0 are expressed through the parameters of 
the failure plane according to Aki by the following formulas 
[25]:
          М1=-М0(cosδ cosλ sinφ -cos2δ sinλ cosφ),
          М2=-М0(cosδ cosλ cosφ +cos2δ sinλ sinφ),
    М3=М0(sinδ cosλ cos2φ +1/2 sin2δ sinλ sin2φ)    (13)                                                   

 For example, in the special case of a double dipole at the 
location (x10, x20, x30) of the nodal plane by the azimuth φ=0°, 
slope δ=90° and slip angle λ =90°, they are the next:

            M1=M3=0

                                                                                           (14)

 Here, M3 is expressed as an energetic model according to 
Riznichenko [26], where r0 is the relative radius of the reference 
sphere, ne� is the divergence coe�cient, and Δσ is the stress 
relieved.

 �e solution to the problem with incomplete boundary 
conditions is naturally not unique. Additional information is 
required to construct a solution to such problems. For instance, 
in the case of a single equation domain (i=1), the solution can be 
represented as a sum with coe�cients of elasticity problem 
eigenvalues and by selection of coe�cients by the least squares 
method involving some a priori information [27,28]. In some 
cases, the solution to Fredholm equations with respect to the 

boundary values, and then additional information is used. We 
do not question the existence of the set problem and acceptable 
solution constructed based on concrete geodynamic 
conditions. According to the hypothesis described above, the 
stress-strain state of the considered territory is caused by the 
compression of the Eurasian plate on one side and the Indian 
and Arabian plates on the other side. It would be naive to look 
for the solution of a heavy elastic prism resting on a �xed base, 
which receives the vertical displacements corresponding to the 
real relief of the earth under the action of lateral compressions. 
At least in the formulation of small deformations, this is 
nonsense because the height of the real terrain reaches 6-7 km. 
�erefore, by numerical experiment, Atabekov [18] decided to 
construct the boundary conditions in such a way that the 
obtained solution under these boundary conditions 
approximately coincided with the established empirical values 
in Gzovsky [16]. At the beginning of the experiment, the 
average σij in the right part of formulas [17,18] was used to 
solve the plane problem, the boundary conditions for which 
were selected preliminarily according to hypothetical data 
about the velocities of the Indian and Arabian plates relative to 
the Eurasian plate. Namely, the stress relations created by the 
Indian and Arabian plates at the southern corners of the Turan 
plate were taken equal to their velocity relations with uniform 
interpolation. Each stress on the right and le� sides of the 
rectangle, which limits our region in plan, was interpolated to 
the upper boundary of the Eurasian plate, which is assumed 
stationary. Figure 3 shows the corresponding boundary 
conditions for this problem and the obtained stress intensity 
isolines σi, determined by the formula: 

               (15)

 

 �e reconstructed stresses of an elastic problem are used 
as initial data for other problems. For example, to solve the 
problem of the modern movements of the Earth’s crust in 
territories of Central Asia by Stokes equations Atabekov [29]. 
�e tectonic �ow of mountain masses occurring in a relatively 
short time can provide important information. One of the 
important parameters in seismic zoning is the displacement 
rate gradient. In contrast to the tectonic stresses, which change 
weakly, the seismotectonic �ow of rock masses occurring in a 

relatively short time can provide important information for 
tectonic zoning. We apply to the Stokes equations similar 
procedures described above for the elastic problem. By relating 
the averaged displacement velocities h/t0, and stresses to μ0/t0 
(µ0-the average viscosity of the constituent regions, t0-the time 
scale), we obtain the following dimensionless Stokes equations:

Figure 7. Relative variation in shear stresses (in %) in the Earth’s crust of Central Asia due to earthquakes (23.02.2023, 00:37:19 GMT, М=6.8, 
h=21 km) in Tadjikistan. On vertical North latitude, on horizontal East longitude in degrees.

 Formula (19) is obtained by averaging the continuity 
equation. In this case, the values of the vertical velocity on the 
lithosphere are taken equal to zero v3(x1, x2, h) =0.

 �e time scale is chosen from the equality of dimensionless 
tangential stresses in the Lamé and Stokes equations:

                                                                                         (20)
 
 

 �e boundary conditions for creep motion were chosen 
according to the modern velocities of the tectonic plates and 
stresses and the found stresses for interior points of the Lame 
equation. Equations (7) and (14) were solved by iteration. As a 
zero approximation, and u3h=0. In each iteration, the system 
was solved by the BEM. �e integral equations of the method 
have a standard form [30]: 

                                (21)

 Here,            ,               , Si are the boundaries of the 

two-dimensional domain Ωi, rj=xj-ξj, bj are the right-hand sides 
of the equations, and pij

*, wij
* are fundamental solutions. �e 

coe�cient cij(x) expresses the regularity of the boundary curve 
and the choice of the fundamental solution. For a regular curve, 
it is equal to π. In the program, it is calculated automatically 
based on the approximated broken line of the boundary curve 
and is equal to the internal angle of the boundary at point x. For 
the Lamé equations (w=ū), they have the following form (31):

                                                                          (22)

                                                      (23)

<i,j=1,2>.
For the Stokes equations (          ) Ladyzhenskaya [31]:

                                                                                      (24)

 

                                                                                                    (25)

�e averaged stresses in the case of creep �ow are constructed 
by the formula:

                                                                                                   (26)

Here’s

                                                           (27)

                                                                                             (28)

 Integral equations (21) contain both known and unknown 
boundary values. In numerical implementation, the calculated 
integrals with known boundary values of velocities and 
stresses are separated into matrix B, which constitutes the 
right-hand side of the algebraic equation. �e integrals with 
unknown displacements and stresses constitute matrix A. �e 
integrals over S are separated into the sum of integrals Si with 
di�erent physical parameters, taking into account the 
conjugation condition of stresses and velocities. �e 
boundaries Si are divided into linear elements, Ωi into 
triangles, the vertices of which are interior and boundary 
points.

Results
�e search for the solution of the main problem is reduced to 
the solution of a number of direct problems by varying the 
boundary stresses. In the initial stage, the boundary conditions 
were taken as for the plane problem. �e stresses obtained 
from the solution of the previous cycle were on the right side of 
(7-9) in the subsequent cycle. Using the formula (11), the 
corresponding modi�ed relief was constructed as u3 (x1,x2, H). 
Figure 4 shows some variants of the relief obtained in the 
numerical experiment. �e �rst picture built on the 
topological map of Central Asia was adopted for the initial 
stage of the numerical experiment. In each cycle, the boundary 
conditions were varied so as not to spoil the real relief and to 
obtain stresses close to the empirical data Gzovsky [16]. �is 
was the essence of the numerical experiment. 

 Currently, not the entire territory of Central Asia is covered 
by a network of GPS data that serve to monitor the movement of 
the Earth’s crust to analyse and assess the stress state of the 
geological environment and forecast changes in the subsurface 
under the in�uence of natural and anthropogenic factors. 
However, unlike horizontal velocities for which there are �xed 
objects taken as reference points, monitoring vertical velocities 
is di�cult. As a result of solving the Stokes problem, we can 
construct by formulas (16-20) a �eld of vertical displacement 
velocities, which are not instrumentally available everywhere. 
�erefore, the creation of a numerical model of the stress state 
of the Central Asian territory serves as an invaluable 
contribution of mechanics to geodetic surveys.

 One of the seismically active territories of Uzbekistan is the 
Ferghana depression (marked with a triangle in Figure 1), 
bounded by active Talas-Ferghana, 
Aksu-Maydantal-Bogonalin, and Gisar-Kokshal faults, 
containing North Ferghana and South Ferghana deep faults, 

which determine the main tectonic weather in this region. 
Within its limits, there is a fairly large reserve of hydrocarbons. 
During the historical period, strong earthquakes with 
magnitudes of M> 7 occurred here. Its main tectonic feature is 
that, under near-meridian compression, the depression has a 
ri� character, characteristic of extension zones. Such features 
of the geodynamics of the region require further clari�cation. 
For modeling, the territory was divided into somewhat 
conditionally homogeneous blocks, as the boundaries of which 
we took deep faults. As a result of the calculation by formulas 
(16-20, 24-28), the �eld of stresses and velocities of the region 
was constructed. Figure 5 shows the averaged horizontal shear 
stresses at depths of 15 km in this area. �ey mark the most 
vulnerable places where there may be dangerous earthquakes 
in the future. Figure 6 shows the vertical movement velocity 
calculated by formula (19). �ey complement the available 
GPS data and, together with stresses, are valuable tectonic 
material for seismic hazard prediction. 
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 �e formulas (7-11, 21-23) make it possible, on average, to 
estimate changes in the stress state of the Earth’s crust due to 
earthquakes. Using simpli�ed models of the earthquake focus 
mechanism φ=0°, δ=90°, λ =90°, we can estimate how the shear 
stresses of the Earth’s crust in Central Asia approximately 
change during speci�c earthquakes. For the example of a 
recent earthquake that occurred in the territory of Tajikistan 
(38.070N|73.200E shown as a polygon in Figure 1) on 
23.02.2023, 00:37:19 GMT, with a magnitude of M0=6.8 and a 
focal depth of h=21 km, the stresses were calculated (Figure 7). 
In this case, this applies because this earthquake occurred 
along an active fault that is located subparallel. As a variation, 
the stress di�erence obtained by equations (8-9) at zero and 
nonzero values of the moments were taken.

 �us, the proposed methods can be applied to �nd the 
stress-strain state of other regions, taking into account their 
peculiarities.

Conclusions
Based on the continuum equations, a model of the stress state of 
the Central Asian lithosphere has been created. Given the 
peculiarities of geodynamic problems, the three-dimensional 
Lame and Stokes equations are averaged in-depth, taking into 
account the topography of the region. Numerical solutions were 
obtained using the method of boundary integral equations for 
zonally homogeneous bodies. �e stresses obtained by the 
solution of the Lamé problem are used to reconstruct the 
modern movements of the Earth’s crust in the local territory of 
Central Asia using the Stokes equations. Stresses and horizontal 
and vertical displacement velocities serve as additional 
information for monitoring the Earth’s interior of Central Asia.
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�e study of modern tectonic stresses at di�erent scale levels is 
becoming increasingly important in the Earth sciences. �e 
determination of these �elds is very promising for new poses, 
not only purely scienti�c but also for prospecting, prognostic, 
geo-ecological, and other applied problems. Geodynamics uses 
data from geology, geophysics, and other sciences and makes 
extensive use of mathematical and physical modeling. 
Geodynamics studies the nature of the underlying processes 
that arise because of the Earth’s evolution and cause the 
movement of matter within the planet. �e study of the stress 
state of the Earth’s crust and mantle is one of its main tasks [1]. 
Stresses are a peculiar characteristic of the tone of the Earth’s 
crust and mantle, which determines the course of geological and 
geophysical processes. �e study of the stress state of the Earth’s 
crust has not only important scienti�c but also practical 
importance. �e fact that rocks experience great stress has long 
been well-known. Tunnel builders encountered it as early as the 
last century. Knowledge of the stressed state of rock massifs can 
increase the reliability of structures by several times.

 �e study of the stressed state of the Earth’s crust is carried 
out on the basis of the combined use of various methods. �e 
leading role belongs to geological methods of reconstruction of 
stress �elds, which took place in the past during the 
development of typical structural elements of the Earth’s crust. 
Since geological investigations alone are not su�cient to 
determine the distribution of stresses in the Earth’s crust, 

theoretical calculations and modeling of stress �elds are of 
great importance. A possible limitation of the model 
conclusions is connected with the inaccessibility of direct 
experiments at Earth depths for the establishment of real 
values of physical parameters.

 �ere are a su�cient number of publications assessing the 
stress state from earthquake mechanisms and geological data 
[2-5]. An extensive review of stresses worldwide is given in 
[6,7]. Some of this information is based on instrumental data, 
but most of it is derived from seismological data. Such data are 
also available for certain areas of Central Asia [8-13]. 
However, all of them are limited to local reconstruction of the 
geodynamic type of deformation 
(tension-shear-compression) and do not give a quantitative 
characteristic of the stress state of the Central Asian crust as a 
whole. Moreover, such works o�en do not take into account 
the basic provision of mechanics - equations of equilibrium 
and boundary conditions, which is rightly criticized by 
Mukhamediev [14,15].

 Gzovsky analyzed numerous studies by di�erent authors 
on tectonic movements during the last 30 million years and on 
seismicity over 50 years for the territory of the former USSR 
[16]. He estimated approximate values of possible maximal 
tangential stresses at depths of 15-20 km, where the sources of 
strong earthquakes are mostly concentrated. Particularly in 
the territory of Central Asia, they obtained values in the range 

from 0.1 to 1.5 (108 Pa), with the lowest values in the Turan 
plate and Central Kazakhstan shield and the highest values in 
the South Tien-Shan and Hindu-Kush parts of the 
Pamir-Hindukush zone In the Northern Tien Shan, Fergana 
intermountain trough, on the big part of Alay and on the 
territory of Pamir maximum tangential stress is estimated 
0.7-1 (108Pa), on the rest territory 0.4-0.6 (108Pa).

 To determine stresses according to the continuum 
equations, boundary conditions have to be set for equilibrium 
equations. Unfortunately, this is di�cult for geodynamic 
problems. At best, we know the fragmentary stresses extracted 
in wells. For a block of rock in natural occurrence, such 
information is usually absent or extremely unreliable since it 
can be derived only from speculative constructions and 
assumptions. Obtaining quantitative stress data based on a 
mathematical model is the main goal of our work.

 Historically, Central Asia underwent a pre-platform 
regime lasting approximately 330 million years from the 
beginning of the Cambrian to the end of the Permian, then a 
platform regime lasting approximately 220 million years to the 
beginning of the Neogene, and �nally, an orogenic regime 
lasting more than 27 million years. According to the 
predominant opinion of the experts, it is believed that the 
region’s tension is caused by the action on the Turan plate of 
the compressive forces of the Punjab wedge of Hindustan and 
the Arabian plate relative to the Eurasian plate. Extrapolation 
of the modern velocities of relative plate movement on the 
southern boundaries gives estimates of 25-46 km/mln years.

Methods
Analyzing the orientation and magnitudes of stresses in 
di�erent belts of the world, Nikolaev et al. concluded that the 
stress �eld in the lithosphere is the result of modern forces 
rather than residual stresses from past tectonic activity [17]. 
�erefore, we decided to build a model of the stress state of the 
Central Asian lithosphere based on the current picture of the 
deformation of its lithosphere. On the basis of elasticity 
equations, the inverse problem is solved. Atabekov de�ned the 
boundary conditions by means of which the received stresses 
on the territory of Central Asia do not contradict the 
empirical values described above [18]. According to the 
properties of stone in laboratory conditions, the elastic 
modulus of granite is approximately 39-40 MPa, and the end 
shear modulus is approximately 14-34 MPa [19]. From this 
follows the question of whether it is possible to apply the 
methods of the theory of elasticity at such stresses. However, at 
the depths of the Earth’s crust, rock strength increases linearly 
with increasing pressure (Byerlee’s law) [20-23]. �erefore, to 
calculate the stresses of the Earth’s crust, it is quite possible to 
apply the methods of the theory of elasticity. Our study of the 
earthquake energy determined on the basis of seismological 
data within the last 120 years shows that the strongest 
earthquakes in Central Asia with geographical coordinates 
(36°-46°E; 56°-76°N) (Figure 1) occur in the interval of 15-20 
km in the Earth’s crust (Figure 2). �e total energy was 
calculated from the earthquake magnitude using the known 
formulas LgE =10K and K =1.8 M+4 available for the territory 
of Central Asia.

�e stress state of the lithosphere is determined by momentum 
equilibrium equations: 

i,j=1,2,3
where σij and µij are the components of the force and moment 
stress tensor, comma j means di�erentiation by Cartesian 
coordinates xj, F (0,0, ρg) is the mass force, ρ is the density, g is 
the acceleration of gravity, εijk is the Levi – Civita tensor, and Mi 
is the mass moment having the size of the moment divided by 
the volume.

 �e main di�culty in the application of asymmetric theory 
lies in the di�culties encountered in determining the constants 
connecting the generalized stresses with the kinematic 
parameters for obtaining the constitutive relations of materials. 
�ere is a limited number of experiments that allow the 
identi�cation of six elastic Cosserat constants only for the 
simplest materials that are known. Considering this 
uncertainty, the rotation can be roughly expressed as before, 
using the formulas ωk =εijkui,j, and then µij =0 and formula (2) 
expresses the asymmetry of the stress tensor corresponding to 
the moment:

    (3)

 Equations (1-3) are supplemented with boundary 
conditions. �ere are no stresses on the Earth’s surface, and on 
the contact of the lithosphere with the asthenosphere, the 
normal stresses are equal to the weight of the overlying layers, 
and the tangential stresses can be assumed to be frictional 
forces arising from the relative movements of the more mobile 
asthenosphere with the lithosphere:

      (4)

                 (5)

 Here, H=H(x1,x2) is the relief of the Earth’s surface, h=h(x1,x2) 
is the lower boundary of the lithosphere, and ka is the 
coe�cient of friction of the lithosphere with the 
asthenosphere. �e problem was solved relative to the Eurasian 
plate, i.e., the displacements corresponding to the lateral 
boundary of the Eurasian plate were considered zero. �ere are 
no boundary conditions on the other lateral boundaries of the 
selected volume. According to tectonic data, the lithosphere of 
the whole region is divided into several conditionally 
homogeneous blocks, which di�er in physical parameters.

 In the Cartesian coordinate system placed on the Earth’s 
surface, the x1 axis is directed parallel, the x2 axis is directed 
along the meridian, and the x3 axis is directed vertically 
downwards. Geodynamic features of the problem statement, 
together with the geometric dimensions in plane and thickness 
of the lithosphere h, allow simpli�cation of the 
three-dimensional equations (1) by the following formula: 

                                                                                               (6)

 where the dash means averaging over x3. In geodynamics, 
the thickness of the lithosphere h is usually assumed to be 
constant and equal to 100 km (1). �is method reduces the 
solutions of the problem to a two-dimensional one but with the 
possibility of preserving some three-dimensional speci�city of 
the solutions. As a result, the following Lame equation was 
obtained for the averaged elastic displacements u1 and u2:       

                                                                         

      (7) 

                       

                       (8)

                                

                       

                       

       (9)

                         

        

                     (10)

                    

                     (11)
 

 Here, Ū-two-dimensional vector with components of 
averaged horizontal displacements, Δ - two-dimensional 
Laplace operator, ν - Poisson’s ratio, u3

h, u3
H vertical 

displacements at the base of the asthenosphere and on the 
surface of the earth. �e p parameter appears when applying 
formula (6) to the shear stress on the free surface of the earth 
and expresses the ratio of stresses on the surface and the 
expected average depth. �e derivatives Mi are averaged by 
formula (6).

 In the equations, linear variables are scaled with respect to 
h, and stresses and moments are scaled with respect to the 
average elastic shear modulus G0.

 In the geographical system of coordinates, Mi is expressed 
using the parameters of the failure plane angles of strike ϕ, slope 
λ, dip δ, and moment M0. According to Landau and Lifshitz 
[24], moment M0 is equal:

 M0 =µAU               (12)

 where µ is the rigidity in the source region, and A is the area 
over which the shear dislocation U has been averaged. �e 
moments Mi and M0 are expressed through the parameters of 
the failure plane according to Aki by the following formulas 
[25]:
          М1=-М0(cosδ cosλ sinφ -cos2δ sinλ cosφ),
          М2=-М0(cosδ cosλ cosφ +cos2δ sinλ sinφ),
    М3=М0(sinδ cosλ cos2φ +1/2 sin2δ sinλ sin2φ)    (13)                                                   

 For example, in the special case of a double dipole at the 
location (x10, x20, x30) of the nodal plane by the azimuth φ=0°, 
slope δ=90° and slip angle λ =90°, they are the next:

            M1=M3=0

                                                                                           (14)

 Here, M3 is expressed as an energetic model according to 
Riznichenko [26], where r0 is the relative radius of the reference 
sphere, ne� is the divergence coe�cient, and Δσ is the stress 
relieved.

 �e solution to the problem with incomplete boundary 
conditions is naturally not unique. Additional information is 
required to construct a solution to such problems. For instance, 
in the case of a single equation domain (i=1), the solution can be 
represented as a sum with coe�cients of elasticity problem 
eigenvalues and by selection of coe�cients by the least squares 
method involving some a priori information [27,28]. In some 
cases, the solution to Fredholm equations with respect to the 

boundary values, and then additional information is used. We 
do not question the existence of the set problem and acceptable 
solution constructed based on concrete geodynamic 
conditions. According to the hypothesis described above, the 
stress-strain state of the considered territory is caused by the 
compression of the Eurasian plate on one side and the Indian 
and Arabian plates on the other side. It would be naive to look 
for the solution of a heavy elastic prism resting on a �xed base, 
which receives the vertical displacements corresponding to the 
real relief of the earth under the action of lateral compressions. 
At least in the formulation of small deformations, this is 
nonsense because the height of the real terrain reaches 6-7 km. 
�erefore, by numerical experiment, Atabekov [18] decided to 
construct the boundary conditions in such a way that the 
obtained solution under these boundary conditions 
approximately coincided with the established empirical values 
in Gzovsky [16]. At the beginning of the experiment, the 
average σij in the right part of formulas [17,18] was used to 
solve the plane problem, the boundary conditions for which 
were selected preliminarily according to hypothetical data 
about the velocities of the Indian and Arabian plates relative to 
the Eurasian plate. Namely, the stress relations created by the 
Indian and Arabian plates at the southern corners of the Turan 
plate were taken equal to their velocity relations with uniform 
interpolation. Each stress on the right and le� sides of the 
rectangle, which limits our region in plan, was interpolated to 
the upper boundary of the Eurasian plate, which is assumed 
stationary. Figure 3 shows the corresponding boundary 
conditions for this problem and the obtained stress intensity 
isolines σi, determined by the formula: 

               (15)

 

 �e reconstructed stresses of an elastic problem are used 
as initial data for other problems. For example, to solve the 
problem of the modern movements of the Earth’s crust in 
territories of Central Asia by Stokes equations Atabekov [29]. 
�e tectonic �ow of mountain masses occurring in a relatively 
short time can provide important information. One of the 
important parameters in seismic zoning is the displacement 
rate gradient. In contrast to the tectonic stresses, which change 
weakly, the seismotectonic �ow of rock masses occurring in a 

relatively short time can provide important information for 
tectonic zoning. We apply to the Stokes equations similar 
procedures described above for the elastic problem. By relating 
the averaged displacement velocities h/t0, and stresses to μ0/t0 
(µ0-the average viscosity of the constituent regions, t0-the time 
scale), we obtain the following dimensionless Stokes equations:

 Formula (19) is obtained by averaging the continuity 
equation. In this case, the values of the vertical velocity on the 
lithosphere are taken equal to zero v3(x1, x2, h) =0.

 �e time scale is chosen from the equality of dimensionless 
tangential stresses in the Lamé and Stokes equations:

                                                                                         (20)
 
 

 �e boundary conditions for creep motion were chosen 
according to the modern velocities of the tectonic plates and 
stresses and the found stresses for interior points of the Lame 
equation. Equations (7) and (14) were solved by iteration. As a 
zero approximation, and u3h=0. In each iteration, the system 
was solved by the BEM. �e integral equations of the method 
have a standard form [30]: 

                                (21)

 Here,            ,               , Si are the boundaries of the 

two-dimensional domain Ωi, rj=xj-ξj, bj are the right-hand sides 
of the equations, and pij

*, wij
* are fundamental solutions. �e 

coe�cient cij(x) expresses the regularity of the boundary curve 
and the choice of the fundamental solution. For a regular curve, 
it is equal to π. In the program, it is calculated automatically 
based on the approximated broken line of the boundary curve 
and is equal to the internal angle of the boundary at point x. For 
the Lamé equations (w=ū), they have the following form (31):

                                                                          (22)

                                                      (23)

<i,j=1,2>.
For the Stokes equations (          ) Ladyzhenskaya [31]:

                                                                                      (24)

 

                                                                                                    (25)

�e averaged stresses in the case of creep �ow are constructed 
by the formula:

                                                                                                   (26)

Here’s

                                                           (27)

                                                                                             (28)

 Integral equations (21) contain both known and unknown 
boundary values. In numerical implementation, the calculated 
integrals with known boundary values of velocities and 
stresses are separated into matrix B, which constitutes the 
right-hand side of the algebraic equation. �e integrals with 
unknown displacements and stresses constitute matrix A. �e 
integrals over S are separated into the sum of integrals Si with 
di�erent physical parameters, taking into account the 
conjugation condition of stresses and velocities. �e 
boundaries Si are divided into linear elements, Ωi into 
triangles, the vertices of which are interior and boundary 
points.

Results
�e search for the solution of the main problem is reduced to 
the solution of a number of direct problems by varying the 
boundary stresses. In the initial stage, the boundary conditions 
were taken as for the plane problem. �e stresses obtained 
from the solution of the previous cycle were on the right side of 
(7-9) in the subsequent cycle. Using the formula (11), the 
corresponding modi�ed relief was constructed as u3 (x1,x2, H). 
Figure 4 shows some variants of the relief obtained in the 
numerical experiment. �e �rst picture built on the 
topological map of Central Asia was adopted for the initial 
stage of the numerical experiment. In each cycle, the boundary 
conditions were varied so as not to spoil the real relief and to 
obtain stresses close to the empirical data Gzovsky [16]. �is 
was the essence of the numerical experiment. 

 Currently, not the entire territory of Central Asia is covered 
by a network of GPS data that serve to monitor the movement of 
the Earth’s crust to analyse and assess the stress state of the 
geological environment and forecast changes in the subsurface 
under the in�uence of natural and anthropogenic factors. 
However, unlike horizontal velocities for which there are �xed 
objects taken as reference points, monitoring vertical velocities 
is di�cult. As a result of solving the Stokes problem, we can 
construct by formulas (16-20) a �eld of vertical displacement 
velocities, which are not instrumentally available everywhere. 
�erefore, the creation of a numerical model of the stress state 
of the Central Asian territory serves as an invaluable 
contribution of mechanics to geodetic surveys.

 One of the seismically active territories of Uzbekistan is the 
Ferghana depression (marked with a triangle in Figure 1), 
bounded by active Talas-Ferghana, 
Aksu-Maydantal-Bogonalin, and Gisar-Kokshal faults, 
containing North Ferghana and South Ferghana deep faults, 

which determine the main tectonic weather in this region. 
Within its limits, there is a fairly large reserve of hydrocarbons. 
During the historical period, strong earthquakes with 
magnitudes of M> 7 occurred here. Its main tectonic feature is 
that, under near-meridian compression, the depression has a 
ri� character, characteristic of extension zones. Such features 
of the geodynamics of the region require further clari�cation. 
For modeling, the territory was divided into somewhat 
conditionally homogeneous blocks, as the boundaries of which 
we took deep faults. As a result of the calculation by formulas 
(16-20, 24-28), the �eld of stresses and velocities of the region 
was constructed. Figure 5 shows the averaged horizontal shear 
stresses at depths of 15 km in this area. �ey mark the most 
vulnerable places where there may be dangerous earthquakes 
in the future. Figure 6 shows the vertical movement velocity 
calculated by formula (19). �ey complement the available 
GPS data and, together with stresses, are valuable tectonic 
material for seismic hazard prediction. 
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 �e formulas (7-11, 21-23) make it possible, on average, to 
estimate changes in the stress state of the Earth’s crust due to 
earthquakes. Using simpli�ed models of the earthquake focus 
mechanism φ=0°, δ=90°, λ =90°, we can estimate how the shear 
stresses of the Earth’s crust in Central Asia approximately 
change during speci�c earthquakes. For the example of a 
recent earthquake that occurred in the territory of Tajikistan 
(38.070N|73.200E shown as a polygon in Figure 1) on 
23.02.2023, 00:37:19 GMT, with a magnitude of M0=6.8 and a 
focal depth of h=21 km, the stresses were calculated (Figure 7). 
In this case, this applies because this earthquake occurred 
along an active fault that is located subparallel. As a variation, 
the stress di�erence obtained by equations (8-9) at zero and 
nonzero values of the moments were taken.

 �us, the proposed methods can be applied to �nd the 
stress-strain state of other regions, taking into account their 
peculiarities.

Conclusions
Based on the continuum equations, a model of the stress state of 
the Central Asian lithosphere has been created. Given the 
peculiarities of geodynamic problems, the three-dimensional 
Lame and Stokes equations are averaged in-depth, taking into 
account the topography of the region. Numerical solutions were 
obtained using the method of boundary integral equations for 
zonally homogeneous bodies. �e stresses obtained by the 
solution of the Lamé problem are used to reconstruct the 
modern movements of the Earth’s crust in the local territory of 
Central Asia using the Stokes equations. Stresses and horizontal 
and vertical displacement velocities serve as additional 
information for monitoring the Earth’s interior of Central Asia.
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